【第一篇:几何图形的认知】
【第二篇:常见定理】
鸟头定理即共角定理。
燕尾定理即共边定理的一种。
共角定理:
若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。
共边定理:
有一条公共边的三角形叫做共边三角形。
共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM
这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。
为了避开相似,我们用相应的底,高的比来推出三角形面积的比。
例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。
很显然,三角形ABD和ACD面积之比是1:2
因为共边,所以两个对应高之比是1:2
而四个小三角形也会存在类似关系
三角形ABE和三角形ACE的面积比是1:2
三角形BED和三角形CED的面积比也是1:2
所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。
以上是根据共边后,高之比等于三角形面积之比证明所得。
必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。
【第三篇:平面图形】
1、长方形
(1)特征
对边相等,4个角都是直角的四边形。有两条对称轴。
(2)计算公式
c=2(a+b)
s=ab
2、正方形
(1)特征:
四条边都相等,四个角都是直角的四边形。有4条对称轴。
(2)计算公式
c=4a
s=a2
3、三角形
(1)特征
由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。
(2)计算公式
s=ah/2