卷扬机行星轮系设计

如题所述

第1个回答  2020-01-19

1.行星轮系类型的选择

最基本的行星轮系包括三个基本构件,即两个中心轮和一个系杆。若中心轮用K代表,系杆用H代表,则这种最基本的行星轮系可以用代号表示为2K-H。

根据两个中心轮的不同类型及固定情况,常用的2K-H行星轮系可以有以下几种不同型式:

(1)两个中心轮中,一个为外齿轮,一个为内齿轮。如图4-14中的a、b、c、e所示。其中a及b都是单排行星轮,但a为中心轮3固定,b为中心轮1固定;c为双排行星轮;而e的行星轮是带内外齿的。

图4-14 2K-H行星轮系的类型

(2)两个中心轮都为圆锥齿轮,如图4-14d所示。

(3)两个中心轮都为外齿轮,如图4-14f所示。

(4)两个中心轮都为内齿轮,如图4-14g所示。

选择轮系的类型时,主要从传动比、效率、结构复杂程度和外廓尺寸等几方面综合考虑而定。首先是考虑能否满足传动比的要求。图4-14中a、b、c、d四种型式的转化机构传动比 都是负的,故将它们称为负号机构。负号机构的特点是传动从左到右(即从主动中心轮到从动系杆H)都是减速的,而且输入与输出的转向相同。这一点从图中的传动比公式也可以清楚地看出,但是它们的减速范围不同。例如类型a的传动比i1H一定大于2,实用范围i1H=2.8~9;如果要求的减速比小于2,则可采用类型b,其传动比i3H一定小于2,实用范围i3H=1.14~1.56;类型c由于采用双排行星轮,它的减速范围较大,可以从1到17;类型d的i1H用在2左右。类型c和d都可以填补a、b二种可用传动比中间的空白区。

图4-14中e、f、g三种型式的转化机构传动比 都是正的,故将它们称为正号机构。当齿数比 时,则 ,传动自左到右为减速,但输入与输出的转向相反;当齿数比 时,传动自左到右为增速(当比 时,n1与nH转向相反;比 时,n1与nH转向相同);当比 时,i1H→0,增速比iH1理论上达无穷大。

从机构传动效率的角度来看,不管用于增速还是减速,负号机构的效率总比正号机构为高。因此,如果所设计的轮系是用作动力传动,这时要求传动有较高的效率,则应该采用负号机构,即图4-14a、b、c、d所示的型式;如果设计的轮系还要求有较大的传动比,而单级负号机构又不能满足要求时,可以将几个负号机构串联起来,或采用负号机构与定轴轮系联合的混合轮系,以取得较大的传动比。如图4-15所示,这些轮系适用的传动比i1H=10~60。

图4-15 动力传动常用的大传动比轮系

正号机构一般用在传动比大而对效率要求不高的辅助机构中。用于增速时,增速比i1H理论上可达到无穷大,但实际上受到效率的限制,i1H越大,效率越低,达到一定值后,机构将发生自锁。

2.行星轮系中各轮齿数的确定

选定行星轮系的类型后,需要确定其各轮的齿数。在行星轮系中,各轮齿数的选配需要满足以下4个条件:

(1)保证实现给定的传动比;

(2)保证两个中心轮及系杆的轴线重合,亦即满足同心条件;

(3)保证各行星轮能够均匀地装入两中心轮之间,亦即满足安装条件;

(4)保证各行星轮不致互相碰撞,亦即满足邻接条件。

现以图4-14a所示的行星轮系为例说明于后:

1)保证实现给定的传动比

液压动力头岩心钻机设计与使用

液压动力头岩心钻机设计与使用

2)保证满足同心条件

根据两中心轮的轴线重合的条件,当采用标准传动和等移距变位传动时,可得

r3=r1+2r2

式中:r1、r2、r3分别表示齿轮1、2、3的节圆半径。

亦即

液压动力头岩心钻机设计与使用

3)保证满足安装条件为使几个行星轮都能够均匀地装入两中心轮之间,则行星轮的数目与各轮齿数之间必须有一定的关系。如图4-16所示,设需要在中心轮1与3之间装入K个行星轮,并要求均匀分布,即相互之间相隔 ,现分析行星轮数K与各轮齿数之间的关系。

图4-16 行星轮系安装条件分析

如图4-16所示,设先装入第一个行星轮于O2,则装好后,中心轮1与3的齿之间的相对角向位置已通过该行星轮而产生了联系。为了在相隔φ°处装入第二个行星轮,可以转动中心轮1,使第一个行星轮的位置由O2转到O2′,并使∠O2O O2′=φ°。这时,中心轮1上的a点转到a′位置,转过的角度为θ,根据传动比公式,角度φ与θ的关系为:

液压动力头岩心钻机设计与使用

如果这时中心轮1转过的角度θ恰好等于转过整数个齿,则轮1与3的齿的相对角向位置又回复到与开始装第一个行星轮时一模一样,故在原来装第一个行星轮的位置O2处,一定能再装入第二个行星轮。同样的过程,可以装入第三个,第四个……直至第K个行星轮。

故相隔φ°能装入第二个行星轮的条件为

液压动力头岩心钻机设计与使用

式中: 为中心轮1每个齿对应的中心角;N为正整数。

将式b代入式a,得

液压动力头岩心钻机设计与使用

由上式可知,欲保证满足安装条件,则两个中心轮的齿数和z1+z3应能被行星轮数K整除。

4)保证满足邻接条件

在图4-16中,O2、O2′为相邻两行星轮的位置,为了保证相邻两行星轮不致相互碰撞,需使中心距O2O2′大于两齿轮顶圆半径之和,即

O2O2′>da

式中:da为行星轮齿顶圆直径。

液压动力头岩心钻机设计与使用

式中:m为模数;h*a为齿顶高系数。

式(4-1)~(4-4)所代表的关系,在选择齿数与行星轮个数时必须满足。

对于图4-14c所示的双排行星轮系,经过类似步骤,不难确定其应满足的相应的关系式为:

(1)传动比条件

(2)同心条件

(3)安装条件

(4)邻接条件

除了上述4个条件外,由于负号机构中的轮2与轮3为内啮合,故在进行几何尺寸计算时,还应检查有无发生干涉的可能。

3.行星轮系的受力分析

了解行星轮系各构件的受力情况是进行结构设计的基础,现以图4-17a所示的传动型式为例,分析各构件的受力情况,分析时略去传动中的摩擦力。

图4-17 行星轮系的受力分析

如图4-17a所示,在此轮系中,假定齿轮1为主动件,受有顺时针的驱动力矩M1,角速度为ω1,系杆H为从动件,它受有逆时针的阻力矩Mr,角速度为ωH。在进行力分析时,把轮系视为在外力作用下处于平衡状态(即轮系处于稳定运转状态),于是如图4-17b所示,可以画出机构各构件的力矩平衡图。

主动轮1上作用有驱动力矩M1和行星轮2对它的反作用力Fn21(下标21代表构件2对构件1的作用)。Fn21又可分解为圆周力F21与径向力R21。R21不产生力矩,它由轮1的支承和机架承受,故在以下的讨论中,将不再提这个分量。圆周力F21对轴O的力矩应与驱动力矩M1大小相等,方向相反。即

F21·r1·K=M1

式中:r1为轮1的节圆半径;K为行星轮个数。

故得

液压动力头岩心钻机设计与使用

行星轮2在主动轮1作用的圆周力F12(F21的反作用力)推动下运动,并如图所示,同时受到系杆H固定轮3的反作用力FH2及F32,根据力的平衡条件,显然得

F32=F12

FH2=F32+F12=2F12

系杆H受到行星轮2的作用力F2H,它对轴O的力矩应与外加阻力矩Mr相平衡,故得

K·F2H(r1+r2)=Mr

而行星轮2给固定轮3的作用力F23所产生的力矩为K·F23·r3,这个力矩是由机架所承受。

由主动轮1输入的功率为

P1=M1·ω1=K·F21·r1·ω1

由系杆H输出的功率为

PH=Mr·ωH=KF2H(r1+r2)ωH=2kF21(r1+r2)ωH

又因

液压动力头岩心钻机设计与使用

故得

液压动力头岩心钻机设计与使用

上式表示,由于轮3固定,如果不计摩擦损失,全部输入功率将由系杆H输出。这个等式也可以用来检查力的分析是否正确。

本回答被网友采纳
    官方服务
      官方网站