大家好,请问谁有琉璃窑炉天燃气烧枪的相关技术资料,和中型马蹄焰窑炉的适用的调试资料。

如题所述

一:天然气的特性
天然气是一种无色、无味、易燃、易爆、高热值、比重轻的气体,经过滤提纯普遍用于家庭燃气,富余部分用于工业。天然气的主要成分为甲烷,甲烷燃点为700℃,在气体燃料中燃点是较高的一种气体。
1、天然气的特点:
1、热值高:热值可达8500KJ/m3,储运输送比较方便,利于熔化的集中送热。
2、不含有有害的苯、萘等芳香烃物质,因是气体性燃料,无可燃性颗粒燃料,燃烧完全,环境污染小。
3、安全性高:因主要成分为甲烷,起天然气中的甲烷含量在94%以上(低于90%的天然气我们称为湿气),可燃气体的燃烧也取决于甲烷的着火温度、浓度范围,着火温度700℃、着火浓度范围5—15%,所以,要想是天然气燃烧,必须达到较高的温度和要求的浓度。
4、天然气热值高,燃烧空气比例为10:1,密度比例为1:0.6,燃烧的浓度范围又比较窄,燃烧速度取决于二者的混合速度,这就要求在燃烧控制和选择燃烧设备时,要充分考虑火焰的可调性。
5、玻璃熔窑的熔化火焰传热主要靠辐射,火焰辐射传热能力取决于火焰的亮度,而火焰亮度取决于燃料燃烧过程中碳微粒的数量多少,在各种燃料中,天然气的碳/氢质量比为3.0---3.2,液体燃料的碳/氢质量比为6.0---7.4,固体燃料的碳/氢质量比为10---30,所以说,在使用天然气作为熔化热量来源时要考虑因火焰亮度低带来的热量损失,如何增加火焰亮度。
6、由于火焰传热特性的改变,既火焰亮度降低致使火焰传递热量的减少,在物料得到同样的热量时,消耗的燃料总热量会增多,废气排放温度会明显增高,考虑燃烧天然气的热回收。
以天然气作为熔化玻璃液的燃料,要充分考虑其燃烧特性,如窑炉的结构特点、保温状态、燃烧器性能等等,以确保玻璃的熔化质量和能耗。
&S226;

二、输送和供给
从气井流出的天然气一般含有大量的矿物质、水蒸气、硫化氢等有害杂质,它和铁反应生成硫化铁,呈片状剥落,腐蚀管道、机械设备,必须经过分离器净化处理后在分发给用户。分离后的天然气甲烷含量一般在90—98%,其他碳氢化合物含量在1—3%,杂质含量很低,含有极少量的硫。
其输送方式是管路输送和液化后汽车输送:
汽车运输:将天然气加压至20MPa充装到特制高压钢瓶罐内汽车运输,这就是所说的压缩天然气,是天然气输送的一种方法。用于天然气管道辐射不到的地方。为用户供应天然气。目前国际上使用这种运送天然气的高压钢瓶约100万只。也有用这种高压钢瓶为汽车加气的,使用较多的国家是意大利,约50万辆。
  压缩天然气的运输,是用汽车将装有压缩天然气的瓶组运至供气站,每种瓶组大小不一。小瓶组为152只高压钢瓶组成,每个钢瓶为75升,2300m3天然气(标准状态)。
  可装大瓶组为8只13m长的高压钢瓶,可装5000m3天然气。
汽车运送到高压气站,经减压处理,输送到用户主管线。
长距离管道输送,一般采用高压输送,管径一般在1000mm以上,压力在10Mpa以上。
玻璃工厂熔化使用的天然气所需压力一般在20Kpa左右即可,需减压处理到使用压力要求后才可供玻璃工厂使用,在降压的同时,对天然气进行过滤,并安装逆制阀、减压阀、稳压器、流量剂等设备,在减压的过程中,由于减压吸热的原因,管路需要加热保温,防止冷凝冻结,造成堵塞和设备的正常运转。
熔化供气系统与供油类似,流量计、气动薄膜调节阀、气动安全阀等等,控制系统以采用气动设备为主,尽可能的减少电器设备,确保运行安全。
&S226;

三、天然气的燃烧

天然气的燃烧是按连锁反应进行,燃烧过程是靠氧作为激发物,产生分子间的碰撞,在一定温度下裂解、燃烧。
天然气的燃烧是由于碳氢化合物分解形成微小的碳粒子,一般在1130—1180℃温度下发生裂解,这些碳粒子不断的燃烧和不断的裂解形成高强度的火焰辐射热能,供玻璃熔窑使用,而天气中的甲烷确不易裂化,造成火焰亮度底,降低了燃气玻璃熔窑的热效率。这就是我们常看到的燃气玻璃熔窑看不见火焰,化料速度底的原因。
天然气的增碳燃烧:天然气增碳燃烧分为自增碳和外增碳两种方法,

一、自增碳燃烧:
自增碳是通过天然气本身裂解产生的碳微粒的增碳方法,燃烧发生的一系列化学反应,在这些反应中,燃料在一些自由基例如O、OH、H碰撞下发生反应,产生更多的H或者是分解成更小的碎片。甲烷的燃烧是CH4被连续地转化成CH3,CH2,CH。最初形成的各种氧化的中间产物与燃料中的碳结合而首先变为CO,并且燃料中的氢基变为H2,所有的中间产物将接着进一步氧化,再一次通过自由基的作用,而变为CO2和H2O。总热量的大部分释放都是发生在第二阶段。当点燃预混燃料时,局部温度将提高到一个非常高的值,提高了反应速率,从而也引起燃料的燃烧,并且释放出热量。通过热传导把热量引导到了未燃的相邻区域,相邻区域的温度提高,反应加快,燃烧得以延续。我们知道,热量的扩散是火焰燃烧得以延续的原因,燃烧传播的速度取决于燃烧后的温度以及未燃混合物的热传导性。为了把高温区域的自由基传递到与之接触的低温的未燃混合物中,质量扩散也是很重要的;通常质量和热扩散率是相同的。
自增碳是使天然气在1130—1180℃温度、缺氧的环境下,尽可能多的裂化,形成碳微粒,这就在燃烧控制上,出现了问题:由于天然气燃烧速度低,需要在高温缺氧环境裂解析出碳微粒,以在火焰剧烈燃烧段增加火焰的亮度,既增加火焰的辐射强度。要想出现此环境,就要降低天然气与空气的混合速度,势必会造成火焰软而无力、浑长、刚性下降,不适应玻璃熔窑熔化。
&S226; 如果增加天然气与空气的混合速度,火焰刚性增加,燃烧速度加快,无充足的析碳时间,火焰亮度下降,出现无明火现象。

天然气燃烧应具备的火焰特性:
1、 火焰应具有较高刚性,利于火焰调整,减少耐火材料的侵蚀。
2、 火焰温度要高,火焰中心出现缺氧状态,以利于天然气中甲烷的裂解,产生更多的碳微粒,提高火焰亮度。
3、 具有较大的火焰覆盖面积,利于火焰对玻璃原料和玻璃液的热传导。
4、 较底的废气排放温度。
5、 有较好的火焰可调性,符合工艺要求。
要想符合上述火焰的要求,应从下两方面去做工作:
一是喷枪,天然气简单的可以用一个管道通入窑内就可以燃烧,但他绝对达不到熔化的要求,一般采用引入压缩空气的方法,使天然气与压缩空气之间具有较大的速度差,形成喷入窑内的火焰中部出现缺氧状态,利于甲烷的裂解,析碳,同时可以通过调整压缩空气的流量和喷出速度,达到调整火焰长度的目的。当然喷枪的结构多种多样,有内混式、外混式等等,多种多样,只要选择适应自己窑炉特性的喷枪即可。

&S22 二、是窑炉结构的适当改变,最好不要直接用燃油窑炉(有些燃油窑炉结构适用于烧天然气,应直接可以使用),可能造成的不利因素有:1、碹顶温度过高,烧损大碹,减少窑炉寿命。2、火焰软、飘,烧损碹角和蓄热室。3、火焰覆盖面小,不利于热传导。

二、外增碳燃烧
天然气燃烧外增碳方法是从外部引入碳微粒,达到提高火焰亮度的目的,一般采用,掺入煤粉(石油焦)或重油混烧的方式。这种方式最使用于玻璃窑炉,可方便的控制火焰长度、刚性、覆盖面,热辐射与燃烧重油基本相同,极大的降低了能源消耗。
总的来说,天然气的使用应考虑以下几点:
1、采用压缩空气,使火焰具有一定的喷出速度,最好不采用天然气高速喷出控制火焰长度的方法。
2、窑体结构适当改变,确保燃气燃烧的正常。如碹顶结构、小炉的结构等等。
3、 适当增加助燃风流速,既增加小炉喷火口的流速,加快火焰燃烧速度,利于火焰的燃烧控制。
4、混烧时的控制方法。等等。

马蹄焰球窑结构

1.结构尺寸

(1)熔化面积。

窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。

(2)熔池长宽比。

长宽比越大,玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。采用高热值燃料的球窑池长可达到10mm,所以可选择较大的长宽比。而采用低热值燃料的球窑应选择较小的长宽比。一般长宽比选用范围为1.4—2.0。

(3)池深。

池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。

(3)工作池。

选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深 300—400mm。

(4)投料池。

为了获得稳定的玻璃质量,一般在池壁两侧设置一对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在 0.8—1.0m。

(5)流液洞。

流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取 5—20m/h。

(6)胸墙高度。

胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

2.小炉设计

小炉是球窑的关键部位,小炉喷出口角度和喷出的速度对燃料燃烧和火焰形状有重要的影响。不合理的设计会使火焰冲击胸墙和大碹,并造成不完全燃烧。燃料在球窑内的燃烧属于扩散式燃烧,助燃空气从小炉口喷出的速度、厚度及与燃料喷出的交角、助燃空气的温度、燃油雾化的程度、油枪在小炉内的布置等因素不仅决定了火焰形状、燃料燃烧状况,而且还影响到火焰对玻璃熔池的热辐射。目前小炉设计仍以实践经验为主,一个成功的设计者应能用燃烧理论、火焰传热理论去分析、应用和总结实践经验。

(1)小炉下倾角一般在18—35°范围内选用,燃油小炉一般选用22—25°,燃烧天然气和干气的小炉下倾角可以大些。在实际生产行中油枪有5°左右的上仰角,在采用天然气和干气时的仰角还要更大些,其目的是让火焰与玻璃液面平行。

(2)小炉喷出口速度(或小炉出口面积),由于燃油雾化后喷入窑炉空间的燃烧过程中伴随着油雾的气化过程,因此燃料混合物喷出的速度大,气化膨胀的阻力也大,油类燃料在窑内的停留时间一般比天然气燃料的时间长,因此燃油小炉喷出的速度可以稍低。当改用天然气时,如果喷出速度太低,会造成燃烧不完全。小炉喷出口速度一般参照小炉喷出口处相应温度的空气速度来进行计算比较合适。小炉喷出的助燃空气要有一定的容积厚度,取其宽高比为2—3.5。

为了使火焰不直接冲刷胸墙,两座小炉内侧间距应不小于0.6,小炉外侧与胸墙间距不小于0.3。

燃烧器布置在小炉下面,一般为2—3只,烧嘴间距为0.4—0.5m。采用天然气和干气燃烧时,如蓄热池宽度小于6m,燃气喷嘴最好放在小炉两侧,不然容易产生不完全燃烧。

3.蓄热室热工计算

目前对蓄热室的研究比较多,可以通过热工计算进行设计。由于热气流在冷却过程中由上而下的流向,可以使同一截面的气流温度趋于均匀,而气体被加热时由下而上的流动又使截面间气体的温度也趋向均匀,采用立式蓄热室的气流正符合这种规则,而且具有占地少、容易清灰的优点,被广泛采用。

蓄热室的热工计算包括蓄热室热平衡和蓄热室传热计算,二者的结果必须相符。即热平衡中空气吸收的热量,必须在传热中实现,否则要重新假设和计算,直至相符为止。

就这么多了,望采纳
温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-06-01
如需资料可和我联系
[email protected],我公司可提供德国进口天然气烧枪。
第2个回答  2011-11-12
楼主,您好,可以去百度文库找找或者到论坛上找找。本回答被提问者采纳