示波器原理与使用

如题所述

示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。 示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。

基本作用
用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测

基本原理
波形显示
由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。

如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。

如果将一随时间线性变化的电压(如锯齿波电压)加到一对偏转板上,则光点在荧光屏上又会怎样移动呢?当水平偏转板上有锯齿波电压时,在时间t=0瞬间,电压为Vo(最大负值),荧光屏上光点在坐标原点左侧的起始位置(零点上),位移的距离正比于电压Vo;在时间t=1的瞬间,电压为V1(负值),荧光屏上光点在坐标原点左方的1点上,位移的距离正比于电压V1;以此类推,在时间t=2,t=3,...,t=8的各个瞬间,荧光屏上光点的对应位置是2、3、…、8各点。在t=8这个瞬间,锯齿波电压由最大正值V8跃变到最大负值Vo,则荧光屏上光点从8点极其迅速地向左移到起始位置零点。如果锯齿波电压是周期性的,则在锯齿波电压的第二个周期、第三个周期、……都将重复第一个周期的情形。如果此时加在水平偏转板上的锯齿波电压频率很低,仅为1Hz ~2Hz,在荧光屏上便会看见光点自左边起始位置零点向右边8点处匀速地移动,随后光点又从右边8点处极其迅速地移动到左边起始位置零点。上述这个过程称为扫描。在水平轴加有周期性锯齿波电压时,扫描将周而复始地进行下去。光点距离起始位置零点的瞬时值,将与加在偏转板上的电压瞬时值成正比。如果加在偏转板上的锯齿波电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,就看到一根水平亮线,该水平亮线的长度,在示波器水平放大增益一定的情况下决定于锯齿波电压值,锯齿波电压值是与时间变化成正比的,而荧光屏上光点的位移又是与电压值成正比的,因此荧光屏上的水平亮线可以代表时间轴。在此亮线上的任何相等的线段都代表相等的一段时间。

如果将被测信号电压加到垂直偏转板上,锯齿波扫描电压加到水平偏转板上,而且被测信号电压的频率等于锯齿波扫描电压的频率,则荧光屏上将显示出一个周期的被测信号电压随时间变化的波形曲线(如图5-6所示)。由图5-6所示可见,在时间t=0的瞬间,信号电压为Vo(零值),锯齿波电压为V0′(负值),荧光屏上光点在坐标原点左面,位移的距离正比于电压V0′;在时间t=1的瞬间,交流电压为V1(正值),锯齿波电压为V1′(负值),荧光屏上光点在坐标的第Ⅱ象限中。同理,在时间t=2,t=3,…,t=8的瞬间,荧光屏上光点分别位于2,3,…,8点。在t=8瞬间,锯齿波电压由最大正值V8′跳变到最大负V0′,因而荧光屏上的光点也从8点极其迅速地向左移到起始位置0点。以后,在被测周期信号的第二个周期、第三个周期……都重复第一个周期的情形,光点在荧光屏上描出的轨迹也都重叠在第一次描出的轨迹上。所以,荧光屏上显示出来的被测信号电压是随时间变化的稳定波形曲线。

由上述可见,为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关

SHS1000
系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。

双线示波
在电子实践技术过程中,常常需要同时观察两种(或两种以上)信号随时间变化的过程。并对这些不同信号进行电量的测试和比较。为了达到这个目的,人们在应用普通示波器原理的基础上,采用了以下两种同时显示多个波形的方法:一种是双线(或多线)示波法;另一种是双踪(或多踪)示波法。应用这两种方法制造出来的示波器分别称为双线(或多线)示波器和双踪(或多踪)示波器。

双线(或多线)示波器是采用双枪(或多枪)示波管来实现的。下面以双枪示波管为例加以简单说明。双枪示波管有两个互相独立的电子枪产生两束电子。另有两组互相独立的偏转系统,它们各自控制一束电子作上下、左右的运动。荧光屏是共用的,因而屏上可以同时显示出两种不同的电信号波形,双线示波也可以采用单枪双线示波管来实现。这种示波管只有一个电子枪,在工作时是依靠特殊的电极把电子分成两束。然后,由管内的两组互相独立的偏转系统,分别控制两束电子上下、左右运动。荧光屏是共用的,能同时显示出两种不同的电信号波形。由于双线示波管的制造工艺要求高,成本也高,所以应用并不十分普遍。

双踪示波
双踪(或多踪)示波是在单线示波器的基础上,增设一个专用电子开关,用它来实现两种(或多种)波形的分别显示。由于实现双踪(或多踪)示波比实现双线(或多线)示波来得简单,不需要使用结构复杂、价格昂贵的“双腔”或“多腔”示波管,所以双踪(或多踪)示波获得了普遍的应用。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-10-21
示波器的原理及使用
示波器是一种用途十分广泛的电子测量仪器。俗话说,电是看不见摸不着的。但是示波器可以帮我们“看见”电信号,便于人们研究各种电现象的变化过程。所以示波器的核心功能,就和他的名字一样,是显示电信号波形的仪器,以供工程师查找定位问题或评估系统性能等等。

而波形,也有多种定义,比如时域或者频域的波形,对于示波器而言,大多数时候测量的是电压随时间的变化,也就是时域的波形。因此,示波器可以分析被测点电压变化情况,从而被广泛的应用于各个电子行业及领域中。

一般我们业内对示波器的分类只按模拟示波器和数字示波器来分,有些厂家可能为了突出其示波器的某项功能给其命名为其他名字,比如数字荧光示波器等。但其本质原理依然逃不出这2大示波器类别。

模拟示波器是属于早期的示波器,主要基于阴极射线管(也叫显像管,曾广泛应用于早期的电视机、显示器)打出的电子束通过水平偏转和垂直偏转系统,打在屏幕的荧光物质上显示波形。

然而到了现在,模拟示波器所剩下的优点,似乎就只有价格了。它没有存储数据和分析波形能力,触发功能也有限,捕获单次和偶发信号的能力也不行,而且由于其内部采用了大量模拟器件,随着时间温度变化这些器件也会发生变化,因此性能也不稳定。现代电子测量中几乎已经淘汰了模拟示波器,因此我们今天主要讲的也是数字示波器。

早期的数字示波器的原理,由于显示技术制约,使用的依然是模拟示波器上的CRT(Cathode Ray Tube,阴极射线管)显示屏。数字示波器区别于模拟示波器的最大不同,主要在于输入的信号不再直接打到显示屏上,而是通过ADC(Analog to Digital Converter,模数转换器)对信号采样和数字化处理后存入高速缓存里,再通过信号处理电路将数据读出来。

由于早期的数字示波器用CRT显示,因此还需要通过DAC数模转换器把数字量转换成模拟量显示到CRT显示屏上。现代化的数字示波器,也已经大多不再使用CRT显示屏,而是采用液晶显示屏,不但体积减少很多,有些还提供了更加操作便捷的触控功能,而且也不再需要把数字化的采样点转换成模拟信号了。由于这两者在功能结构上没有本质区别,所以业界一般也没有CRT示波器和LCD示波器的叫法。

数字示波器的原理很多时候都被叫做数字存储示波器,因为数字示波器中重要的一环,就是把ADC采集的数据存储起来。现代数字示波器采集数据的主要过程我们通过这块麦科信STO1104C智能示波器的主板进行直观了解:

①信号通过探头衰减成合适比例送入示波器前端。示波器能测多大电压一般取决于探头,探头通过衰减可以把上万伏的电压信号变成几十伏。

②信号通过耦合电路到达前端衰减器和放大器,示波器软件上表现为调节垂直档位,使得波形尽量占满整个屏幕,从而提高垂直精度,使测量更准确。前端部分很大程度上决定了示波器的第一指标:带宽。

③ARM处理器控制FPGA调节ADC模数转换器采样率,示波器软件上表现为调节时基,由于存储深度为固定值,采样率 = 存储深度 ÷ 波形记录时长,通常时基设置的改变是通过改变采样率来实现的。因此厂家标注的采样率往往是在特定时基设置之下才有效的,在大时基下受存储深度的影响,采样率不得不降低。ADC模数转换器和RAM高速存储器影响着示波器的另外两大指标:采样率和存储深度。

④接下去,由FPGA驱动ADC同步采样,ADC将采集到的数据进行二进制数据化并写入高速缓存。存储器缓存即存储深度,一般存储器的大小是示波器标识存储深度大小的四倍,因为FPGA无法控制示波器的触发,因此采集的信号必定先是标识存储深度的2倍,然后再来根据触发筛选其中的一段波形,所以示波器可以看到触发位置之前的波形。又由于示波器在筛选之前采集的波形的时候,采集不能停,否则就会导致波形捕获率太低,因此同时还需要继续采集同样长度的采样点,如此反复,这样一来就是四倍了。

⑤收到触发指令后,存储器再把数据交给ARM处理器处理

⑥ARM处理器将数据处理后通过显示接口将数据输出至显示屏展示给使用者。通过计算,示波器还能模仿出类似模拟示波器的多级辉度显示,以及数字示波器特有的色温显示效果,余晖显示效果。

⑦示波器处理完数据后,可以把当前的波形图像或者是数据保存到存储器中,要注意这里的存储完全不同于存储深度的高速存缓,大多数示波器采用外部存储器如U盘,SD卡,电脑等,现在一些现代化的示波器会内置大存储可以直接保存在示波器里。
这个过程中,②③④都是并行处理的。

由于数字示波器处理速度的制约,所以它并不能保证被测信号的波形能连续不断地实时显示在屏幕上,显示的两个波形之间会有波形数据丢失,也即所说的死区时间,这也是数字示波器相比较于模拟示波器的最大缺点了。不过,随着示波器运算能力的增强,波形捕获率的不断上升,这一缺点也在被慢慢弥补。
第2个回答  2020-10-21
示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。 示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。

用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测

波形显示
由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。

如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。

如果将一随时间线性变化的电压(如锯齿波电压)加到一对偏转板上,则光点在荧光屏上又会怎样移动呢?当水平偏转板上有锯齿波电压时,在时间t=0瞬间,电压为Vo(最大负值),荧光屏上光点在坐标原点左侧的起始位置(零点上),位移的距离正比于电压Vo;在时间t=1的瞬间,电压为V1(负值),荧光屏上光点在坐标原点左方的1点上,位移的距离正比于电压V1;以此类推,在时间t=2,t=3,...,t=8的各个瞬间,荧光屏上光点的对应位置是2、3、…、8各点。在t=8这个瞬间,锯齿波电压由最大正值V8跃变到最大负值Vo,则荧光屏上光点从8点极其迅速地向左移到起始位置零点。如果锯齿波电压是周期性的,则在锯齿波电压的第二个周期、第三个周期、……都将重复第一个周期的情形。如果此时加在水平偏转板上的锯齿波电压频率很低,仅为1Hz ~2Hz,在荧光屏上便会看见光点自左边起始位置零点向右边8点处匀速地移动,随后光点又从右边8点处极其迅速地移动到左边起始位置零点。上述这个过程称为扫描。在水平轴加有周期性锯齿波电压时,扫描将周而复始地进行下去。光点距离起始位置零点的瞬时值,将与加在偏转板上的电压瞬时值成正比。如果加在偏转板上的锯齿波电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,就看到一根水平亮线,该水平亮线的长度,在示波器水平放大增益一定的情况下决定于锯齿波电压值,锯齿波电压值是与时间变化成正比的,而荧光屏上光点的位移又是与电压值成正比的,因此荧光屏上的水平亮线可以代表时间轴。在此亮线上的任何相等的线段都代表相等的一段时间。

如果将被测信号电压加到垂直偏转板上,锯齿波扫描电压加到水平偏转板上,而且被测信号电压的频率等于锯齿波扫描电压的频率,则荧光屏上将显示出一个周期的被测信号电压随时间变化的波形曲线(如图5-6所示)。由图5-6所示可见,在时间t=0的瞬间,信号电压为Vo(零值),锯齿波电压为V0′(负值),荧光屏上光点在坐标原点左面,位移的距离正比于电压V0′;在时间t=1的瞬间,交流电压为V1(正值),锯齿波电压为V1′(负值),荧光屏上光点在坐标的第Ⅱ象限中。同理,在时间t=2,t=3,…,t=8的瞬间,荧光屏上光点分别位于2,3,…,8点。在t=8瞬间,锯齿波电压由最大正值V8′跳变到最大负V0′,因而荧光屏上的光点也从8点极其迅速地向左移到起始位置0点。以后,在被测周期信号的第二个周期、第三个周期……都重复第一个周期的情形,光点在荧光屏上描出的轨迹也都重叠在第一次描出的轨迹上。所以,荧光屏上显示出来的被测信号电压是随时间变化的稳定波形曲线。

由上述可见,为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关

SHS1000
系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。
第3个回答  2020-10-21
在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用 表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本 章从使用的角度介绍一下示波器的原理和使用方法。

1、示波器工作原理

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中 的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1、示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

图1示波管的内部结构和供电图示

1.荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余 辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用 短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

2.电子枪及聚焦

电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很 细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作 用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴 极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与 阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从 阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、 A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调 节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3.偏转系统

偏转系统控制电子射线方向,使荧 光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板 在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4.示波管的电源

为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴 极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前 加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2示波器的基本组成

从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变 化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信 号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

图2示波器基本组成框图

被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足 够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负) 极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏 之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系 统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

2、示波器使用

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向 分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交 流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2示波管和电源系统

1.电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2.辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3.聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

2.3垂直偏转因数和水平偏转因数

1.垂直偏转因数选择(VOLTS/DIV)和微调

在 单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电 压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时 针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被 拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是 0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2.时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔 出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的 时间值等于

2μS×(1/10)=0.2μS

TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。
第4个回答  2020-10-21

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像。

原理:示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点,利于观察;

应用:利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等。

使用步骤如下:

1、预调:反时针旋转辉度旋钮到底,竖直和水平位移转到中间,衰减置于最高档,扫描置于“外X档”;

2、开电源,指示灯亮后等待一两分钟进行预热后再进行相关的操作;

3、先调辉度,再调聚焦,进而调水平和竖直位移使亮点在中心合适区域;

4、调扫描、扫描微调和X增益,观察扫描;

5、把外X档拔开到扫描范围档合适处,观察机内提供的竖直方向按正余弦规律变化的电压波形;

6、把待研究的外加电压由Y输入和地间接入示波器,调节各档到合适位置,可观察到此电压的波形。