初三数学二次函数压轴题

如题所述

初三数学二次函数压轴题通常包括求抛物线解析式、求最大值、求与坐标轴的交点坐标等问题。相关解释如下:

1、在平面直角坐标系中,二次函数y=ax^2+bx+c的图像与x轴交于A、B两点,A点的坐标为(﹣3,0),B点在原点的左侧,与y轴交于点C(0,3),点P是直线BC上方的抛物线上一动点。

2、在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且直线AB经过抛物线y=ax^2和直线y=kx+b(k为正常数)的交点A和点B,其中点A的坐标是(﹣2,1),点B的坐标是(4,3)。

3、已知抛物线y=ax^2和直线y=kx+b(k为正常数)交于点A和点B,其中点A的坐标是(﹣2,1),过点A作x轴的平行线交抛物线于点E,点D是抛物线上B、E之间的一个动点,设其横坐标为t,经过点D作两坐标轴的平行线分别交直线AB于点C、B,设CD=r,MD=m。

解答压轴题的技巧

1、杂的问题简单化:把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解。已知条件出发,结合选项,通过观察、分析、猜想、计算等方法一一排除明显出错的答案,缩小思考范围,提高解题的速度。

2、运动的问题静止化:对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,再找到变化线段之间的联系,用代数式慢慢求解。

3、一般的问题特殊化:有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜