说明热喷涂的主要工艺过程?

如题所述

我是做热喷涂前处理设备喷砂机的。那么在这里对前处理喷砂相关技术成果提供给大家,彼此提高。

热喷涂工艺与喷砂工艺技术分析

1、热喷涂前表面吹砂粗化的目的

基体表面的喷砂预处理是采用高硬度的磨料颗粒高速喷射基体表面,对基体表面产生冲刷、凿削和锤击作用,以除去基体表面的铁锈、鳞皮、毛刺、焊渣、旧陶瓷涂层等污物,并形成具有相当粗糙度的基体表面,使金属基体裸露出新鲜的活性表面,同时产生净化、粗化和活化效果。此外,喷砂还对基体材料有一定的应力松弛并具有提高其疲劳强度的作用。加之喷砂的生产效率高,因此特别适合于大面积、大批量生产产品的表面预处理和现场施工,因而成为工业上常用的一种表面预处理方法。

2、热喷涂对吹砂表面粗糙度有哪些要求

为了获得满意的涂层结合强度,热喷涂对基体表面喷砂处理后的粗糙度有特定的要求。

     2.1以表面粗糙度(Ra 即喷砂表面波峰与波谷的算术平均值)表示不同情况下热喷涂合适的表面粗糙度值,列于下表。

 应用对象 表面粗糙度Ra/μm           大多数喷涂层         薄金属件              塑料件

                                                       2.5-13                      1.3                     6

       通常,随着表面粗糙度增大,涂层的结合强度提高。但表Ra >10μm后,这种效果就大大减弱。欲获得佳的涂层结合强度,其相应的表面粗糙度尺寸应为被喷涂粉末直径的3/4好。

    2)以喷砂态的表面形貌表示

按GB8923-88《涂装前钢材表面锈蚀等级和除锈等级》标准的规定,热喷涂时钢铁材料的喷砂除锈分级要求达到高级Sa3.0,即金属基体呈现白色,喷砂后的表面无各种明显的油、脂、灰尘、轧皮、锈斑、涂膜、氧化物、腐蚀产物和其他外来物质。至少应达到近白色的次高级Sa2.5级。喷砂后基体表面的形貌和颜色应与钢材表面喷砂的标准等级图片或标准等级样板进行比较评定。

3、吹砂气体压力对基体表面性能有什么影响

 喷砂气体压力的改变对基体表面内应力影响大,采用高压气体对薄板、长件表面喷砂,常常会引起工件的扭曲变形,软基体(如铝、锌、巴氏合金等)表面会镶嵌喷砂的磨料。另外,随着喷砂气体压力的增加,基体表面活性增强,表面粗糙度值增大,喷砂效率提高。钢铁、不锈钢、合金钢工件,气体压力值应≥ 0.5Mpa。 对于软基体工件,气体压力值应≤ 0.3MPa。

4、吹砂距离、角度、时间对基体表面性能有什么影响

 吹砂距离的变化,对吹砂效率影响大,其次是影响机体表面粗糙度,一般基体表面硬度大于45HRC,吹砂距离为100mm~150mmm,基体表面硬度在25HRC~45HRC之间,吹砂距离为150mm~200mm,软基体表面硬度小于150HB,吹砂距离为250mm~300mm。   

    吹砂角度的改变主要影响基体表面的粗糙度,吹砂角度由30°~75°变化时,随着吹砂角度增加,粗糙度随之增大,但佳的吹砂角度为70°~80°。

    吹砂时间的改变对基体表面活化程度有较大的影响,一般随着对工件固定不动的吹砂时间的增加,表面活性增加,但吹砂时间达到20S左右时,表面活性基本达到饱和。一般基体表面粗糙度达到Sa3级,吹砂时间约在5S~10S。

5、如何选择喷砂磨料的形态

  喷砂磨料必须清洁、干燥、有棱有角,忌用铸件抛丸清理后用过的磨料进行热喷涂的喷砂预处理。磨料在喷砂过程中依磨料种类和性能不同,会产生不同程度的粉碎。微细的粉尘既影响喷砂效率,也会沉积在基体的预处理表面,将影响喷涂涂层的结合,还会污染环境。因此,当磨料的粉碎超过20%时,应筛去微粉,将磨料清洗烘干后再用。好采用50%回收磨料+50%新磨料的混合磨料再用。

6、射吸式吹砂机的原理

    射吸式(又称吸入式)喷砂机是利用压缩空气流在喷砂枪的射吸室内造成的负压,通过砂管吸入砂粒,并随气流从喷嘴喷出对工件表面进行粗化预处理的装置。这种喷砂方法设备简单,使用方便,但砂的吸入量较少、喷射速度较低,喷砂效率不高,通常用于小面积或薄壁件及有色金属的喷砂处理。射吸式喷砂机结构示意图如图所示,在喷砂过程中,从空气喷嘴喷出的高速气流在周围形成负压,通过吸砂管把磨料从喷砂箱底部的锥型料斗处吸进,带入高速喷出的气流中。在高速气流中,磨料被加速,喷射到工件基体表面。在封闭的喷砂柜中,撞击到工件表面的砂粒被弹射,收集在喷砂柜中,经过筛网筛分下落到漏斗内,并被回收循环使用。磨料可被连续使用,直至磨料破碎失去喷砂效果为此。射吸式喷砂机有小型的手工操作的装置以及中型的、完全自动化体系的装置。这种喷砂机适宜使用相对密度较小的非金属磨料,不适合使用相对密度较大的金属磨料。因为相对密度较大,且粒度较大的铸铁砂或钢砂需要更大的负压吸入力。

     与压力式喷砂机和离心喷砂机相比,射吸式喷砂枪的生产效率较低,吸砂管路较短,只适用于加工体积较小的工件,但这种喷砂枪结构简单,价格低,使用灵活,维护方便,在现场可用于小面积的局部喷砂处理。射吸式喷砂枪需要的压缩空气流量较小,但要求使用较高的压力,通常为0.52MPa~0.7MPa。

 


、压力式吹砂机的原理

 压力式吹砂机是利用压缩空气的压力和砂粒自重,将压力罐(密闭的压力容器)中的砂粒压入喷砂管,由压缩空气推动,从喷嘴高速喷出对工件表面进行粗化处理的装置。喷砂系统由压缩空气供给设备、压力罐(砂罐)、砂管和吹砂枪等组成。压力式吹砂机的有的是和结构如图所示。砂罐是压力式吹砂机的关键设备,容量通常在0.01m3~2m3之间,其中的空气压力通常维持在0.7MPa左右


 

8、吹砂粗化预处理的缺点有哪些

1)不适于已精加工的零件或对加工精度要求高的零部件的预处理。

2)不能直接用于清除黏性的或有弹性的污染物,如脂类、油或沥青等。(可考虑湿式喷砂)

  3)不能对带有深凹槽或包围腔室的复杂零件进行喷砂,在这些部位喷砂,很容易造成磨料堆积。

  4)磨料喷砂能在工件表面产生残余压缩应力,特别是在采用钢丸或玻璃珠喷砂时更是如此。这对于提高制件的疲劳强度有利,但对于电器部件如电机用硅钢片铁芯,喷砂处理将会改变其电磁性能,造成有害影响。

  5)射吸式喷砂机和离心式喷砂机能够喷砂的工件尺寸受到限制。离心式喷砂机只适于喷涂大批量的同一种零件,生产的柔性小。

6)喷砂产生相当大的粉尘和噪声,污染环境。可以考虑湿喷砂或循环回收式环保喷砂及喷砂房对粉尘及噪声进行治理。

 

9、如何选择吹砂磨料的粒度

喷砂磨料粒度的选择主要取决于所需要的表面粗糙度,也与磨料的硬度、涂层厚度和喷砂用空气压力等因素有关。实际使用的喷砂磨料,其粒度范围通常分为三挡;

粗砂(0.6mm~2.0mm,-1目~+30目),中粗砂(0.425mm~1.4mm,-14目 ~ +40目),细砂(0.18mm~0.6mm,-30目 ~ + 80目)。当要求喷涂涂层厚度超过0.25mm时,推荐采用粗砂,以提高基体的表面粗糙度,获得佳的粘结性能 ;当涂层厚度小于0.25mm,要求基体表面的比较均匀时,则宜采用中粗砂,能达到满意的粘结强度;当涂层厚度小于0.25mm,且涂层以喷涂态(不经后加工)使用时,即要求喷涂态涂层的表面比较均匀、光洁时,宜采用细砂喷砂。细砂喷砂时,单位时间单位面积上冲击基体表面的磨料数目和接触面积均大,因而喷砂效率高,但表面粗糙度小;反之,磨料粒度大、喷砂效率低,表面粗糙度增大。

对于各种金属基体,推荐采用的磨料粒度为0.25mm~ 1.18mm(-16目 ~+ 60目);对于大多数塑料基体,则宜采用0.15mm~0.25mm(-60目 ~+ 100目)磨料;对于薄涂层,特别是薄基体,应采用细粒度磨料,其粒度范围为0.125mm~0.71mm(-25目~+120目);对于厚度大于0.25mm的厚涂层,或为了获得好的结合强度,则应采用较粗的磨料,其粒度范围为0.71mm~1.00mm(-25目~+18目),以产生更粗糙的表面。

 

10、电火花粗化法和人工粗化法

 电火花粗化法是在基体表面经去油、锈处理后,使用镍丝(板)或铝丝等做电极,同另一电极基体表面接触产生电弧,使镍或铝熔粘于钢或制品的表面,通过持续不断地接触,在基体表面生成一层粗糙的镍或铝薄焊层,达到基体表面粗化的目的。

  电火花粗化属手工操作,生产效率低,但设备简单,使用方便,特别适合于不允许或无法喷砂粗化、硬化表面或局部部位的宏观粗化。

       人工粗化法是工件的表面采用喷砂处理,粗糙度达不到涂层要求时,则需对喷涂的基体表面再进行人工粗化,包括在其表面开沟槽,打眼和埋螺钉,以便增加涂层的啮合能力与分散涂层的内应力

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2016-06-16
热喷涂工艺通常包括:表面预处理、预热、喷涂、涂层后处理等。
(一)表面预处理
表面预处理分为:净化处理 (Cleaning Treatment)、粗化处理 (Roughing Treatment)
净化处理常用的几种方法:
1)溶剂清洗法: 常用的溶剂有汽油、煤油、柴油、丙酮、酒精、三氯乙烯、四氯化碳等。清洗的方法有浸泡和擦刷法、喷淋脱脂法。
2)蒸气清洗法:常用的溶剂一般为三氯乙烯、四氯化碳等。
3)碱洗法:碱洗法是将工件表面放到氢氧化钠或碳酸钠等碱性溶液中,待工件表面的油脂溶解后,再用水冲洗干净。
4)加热脱脂法:将疏松工件表面加热到250~450℃的温度,使油脂渗出表面,挥发烧掉,然后再加以清除。
粗化处理的目的:增加涂层和基材表面之间的接触面;使净化处理的表面更加活化,提高涂层的结合强度;改变涂层中残余应力的分布。常用方法:喷砂、机械加工法、电拉毛及喷涂自粘结材料作结合底层等。
1)喷砂处理 (Grit Blasting)
目的:(a) 清除表面的污物;(b) 使表面获得一定的粗糙度;(c) 能使工件表面产生残余压应力,可提高工件表面的疲劳强度;(d) 能使工件表面活化,有助于提高喷涂层的结合强度。
常用的磨料及粒度:刚玉砂、激冷铁砂、带棱角的钢砂、碳化硅砂、金刚砂等。喷砂粗化时砂粒粒度多是将粗(20目左右)、细(40目左右)两种砂粒混合使用。喷砂的方式:射吸式、压力式、离心式三种。
2)机械加工法 (Machining)
a) 原理:采用机械切削和凿、滚压等方法对喷涂表面进行粗化预处理,多用于轴类零件。对于平面部件,也采用开槽处理。
b) 粗化方法:车毛螺纹、车沟槽-滚花及平面开槽等,但对于承受疲劳载荷的轴类零件不宜采用车螺纹粗化。
c) 应用:适用于可进行切削加工的钢材和有色金属基材。在需要制备较厚的涂层或需要适应较苛刻的载荷条件时,采用先机械加工粗化,然后,再喷砂的方法能获得良好的效果。
3)电拉毛粗化 (Electrical DischargeRoughing)
a) 原理:电拉毛是采用镍条作电极接在电源的一端,工件接另一端,当作为电极的镍条在工件上划擦时,在接触处产生电火花,因电热造成局部熔化,镍条熔粘在工件表面。这样反复划擦,便在工件上形成覆盖有熔化金属层的粗糙表面。
b) 应用:电拉毛适用于工件硬度较高又不能采用喷砂或机械加工的工件表面的粗化处理。由于电拉毛产生了放电痕对基材的切割作用,工件的疲劳寿命会下降。
4)喷涂粘结底层
a) 原理: 某些材料能在光滑表面上形成具有一定粘结强度、洁净、粗糙、活性高的涂层,再在其上面喷涂其它性能的涂层,这种作为过渡层的涂层一般称为粘结底层,喷涂粘结底层用的材料称为自粘结材料。
b) 常用的自粘结材料:Ni-Al和Mo;Ni-Cr、NiCrAl合金或MCrAlY(M:Ni、Co、Fe)。
c) 底层厚度:一般在0.08~0.12mm范围内较合适。
(二) 预热 ( Preheating)
1.目的:消除工作表面的水分和湿气;提高喷涂粒子与工件接触时的界面温度;减少因工件热膨胀造成的涂层应力,避免涂层开裂,提高涂层与基材的结合强度。
2.预热温度:取决于工件的大小、形状和材质及喷涂材料的热膨胀系数。一般情况下预热温度控制在60~120℃之间。
3.预热的方法:采用氧乙炔火焰加热,也可以用电炉、高频炉加热。
(三)喷涂 ( Spraying)
1.制备好的工件表面要在尽量短的时间 (2h-4h) 内进行喷涂。
2.喷涂工艺参数要根据涂层种类、喷枪性能和工件的具体情况而定, 对于不同的喷涂方法都有相应的喷涂参数。
3.控制喷涂参数的目的是为了提高喷涂速率,增加涂层的致密度,提高涂层的结合强度,得到高质量的涂层。
(四)涂层的后处理 ( Post-treating)
1.喷涂后得到的涂层有时不能直接使用。
2.对于防腐涂层,为了防止介质进入涂层到达基材需进行封孔处理。封孔剂应根据工作环境介质的性质、成本等因素来考虑。
3.对于承受高应力载荷或冲击磨损的工件,要对喷涂层进行重熔处理,使疏松多孔与基材主要靠机械结合的涂层变为与基体是冶金结合的致密喷熔层。
4.有尺寸精度要求的工件要进行机械加工,由于喷涂层本身的一些特性,决定了它与一般金属材料不同的加工特点。所以,必须选用合理的加工方法和相应的工艺参数,才能保证机械加工的顺利进行和所要求的尺寸精度。本回答被提问者采纳
第2个回答  2021-04-27
你好 热喷涂主要有两大类工艺
一,防腐类(包括某些装饰性涂层),如:喷锌、喷铝。
1,喷砂处理。
2,喷涂金属材料。

二,修复类,如轴类的修复。
1,车床加工,将欲修复的轴尺寸适当车小;
2,去油;
3,拉毛(对于尺寸较小的轴),车螺纹后再拉毛(对于尺寸较大的轴);
4,喷涂金属材料;
5,磨床加工。