当-2<x<0时
∫[(x+|x|)/(2+x^2)]dx=∫[(x-x)/(2+x^2)]dx=0
当0≤x<2时
∫[(x+|x|)/(2+x^2)]dx=∫[(x+x)/(2+x^2)]dx=∫[2x/(2+x^2)]dx=∫[1/(2+x^2)]d(2+x^2)=ln(2+x^2)=ln6-ln2=ln3
所以在-2到2区间上
∫[(x+|x|)/(2+x^2)]dx=0+ln3=ln3
9.∫(2x-x^2)^1/2dx
=∫(1-(x-1)^2)^1/2d(x-1)
令x-1=cosy,则:
=∫siny d(cosy)
=∫(siny)^2dy
=1/2(y-sinycosy)
x-1∈[-1,0],y∈[π/2,π]
代入之后得到:
1/2[(π-π/2)]-1/2[sinπcosπ-sin(π/2)cos(π/2)]
=π/4
11.求定积分(0,a) ∫x²√(a²-x²) dx
原式=(0,a)∫(ax²√[1-(x/a)²]dx
令x/a=sint,则dx=acostdt,x=0时,t=0;x=a时,t=π/2.
故原式=(0,π/2)a⁴∫sin²tcos²tdt=(0,π/2)(a⁴/4)∫sin²(2t)dt=(0,π/2)(a⁴/8)∫sin²(2t)d(2t)
=(0,π/2)(a⁴/16)∫[(1-cos4t)/2]d(4t)=(0,π/2)(a⁴/32)∫[(1-cos4t)d(4t)
=[(a⁴/32)(4t-sin4t)](0,π/2)=(a⁴/32)×(2π)=πa⁴/16
好的,蟹蟹~
追答嗯