比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
举例说明
①表示两个比值相等的式子叫做比例,如3:4=9:12、7:9=21:27
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
②比如:教师和学生的~已经达到要求。
④比例写成分数的形式后,那么,左边的分母和右边的分子是内项;左边的分子和右边的分母是外项。
⑤比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
正比例反比例
反比例性的概念可以与直接相称性进行对比。考虑两个变量被认为是“相互成比例”的。如果所有其他变量保持不变,如果另一个变量增加,则一个反比例变量的幅度或绝对值减小,而其乘积(比例常数k)总是相同的。
如果每个变量与另一个变量的乘数相反(倒数)成正比,则两个变量成反比(也称为反向变化,反向变异,反比例),如果其乘积是一个常数。因此,如果存在非零常数k,则变量y与变量x成反比:
例如,旅途所需的时间与旅行速度成反比;挖洞所需的时间(大概)与挖掘人数成反比。
在笛卡尔坐标平面上反向变化的两个变量的曲线图是矩形双曲线。曲线上每个点的x和y值的乘积等于比例常数(k)。既然x和y都不能等于零(因为k是非零),所以图形从不跨任一个轴。
比例的意义是什么