复利计算公式为什么有e,代表什么呢?

如题所述

数学常数e一般指欧拉常数
扩展内容:
F=P*(1+i)^nF=A((1+i)^n-1)/iP=F/(1+i)^nP=A((1+i)^n-1)/(i(1+i)^n)A=Fi/((1+i)^n-1)A=P(i(1+i)^n)/((1+i)^n-1)F:终值(FutureValue),或叫未来值,即期末本利和的价值。
P:现值(PresentValue),或叫期初金额。A:年金(Annuity),或叫等额值。i:利率或折现率N:计息期数复利计算的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。复利的本息计算公式是:F=P(1+i)^n复利计算有间断复利和连续复利之分。
按期(如按年、半年、季、月或日等)计算复利的方法为间断复利;按瞬时计算复利的方法为连续复利。在实际应用中一般采用间断复利的计算方法。复利计算公式是计算前一期利息再生利息的问题,计入本金重复计息,即“利生利”“利滚利”。它的计算方法主要分为2种:一种是一次支付复利计算;另一种是等额多次支付复利计算。
欧拉常数又称欧拉-马斯克若尼常数,近似值为γ≈0.57721 56649 01532 86060 65120 90082 40243 10421 59335。
它的的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。主要应用于计算多次等额投资的本利终值和计算多次等额回款值。
欧拉常数最先由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)在1735年发表的文章 De Progressionibus harmonicus observationes 中定义。欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-11-23
百度了下,说这是常数。
数学常数e一般指欧拉常数。本回答被网友采纳
第2个回答  2017-07-19
F=P*(1+i)^n
F=A((1+i)^n-1)/i
P=F/(1+i)^n
P=A((1+i)^n-1)/(i(1+i)^n)
A=Fi/((1+i)^n-1)
A=P(i(1+i)^n)/((1+i)^n-1)
F:终值(Future Value),或叫未来值,即期末本利和的价值。
P:现值(Present Value),或叫期初金额。
A :年金(Annuity),或叫等额值。
i:利率或折现率
N:计息期数
复利计算的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。复利的本息计算公式是:F=P(1+i)^n
复利计算有间断复利和连续复利之分。按期(如按年、半年、季、月或日等)计算复利的方法为间断复利;按瞬时计算复利的方法为连续复利。在实际应用中一般采用间断复利的计算方法。
复利计算公式是计算前一期利息再生利息的问题,计入本金重复计息,即“利生利”“利滚利”。它的计算方法主要分为2种:一种是一次支付复利计算;另一种是等额多次支付复利计算。
它的的特点是:把上期末的本利和作为下一期的 本金,在计算时每一期本金的数额是不同的。主要应用于计算多次等额投资的本利终值和计算多次等额回款值。
相似回答