1、设两个非零向量a与b的夹角为θ则将b·cosθ叫做向量b在向量a方向上的投影或称标投影(scalar projection)。
2、在式中引入a的单位矢量aA、可以定义b在a上的矢投影(vector projection)。
3、由定义可知、一个向量在另一个向量方向上的投影是一个数量。
4、当θ为锐角时、它是正值、当θ为直角时、它是0、当θ为钝角时、它是负值、当θ=0°时、它等于b、当θ=180°时它等于b。
5、设单位向量e是直线m的方向向量、向量AB等于a、作点A在直线m上的射影A,作点B在直线m上的射影B,则向量AB叫做AB在直线m上或在向量e方向上的正射影,简称射影。
6、向量是几何的工具是解题的方法、也是一种思想向量本身蕴含着几何意义、因此利用几何分析是理所应当简称射影。