制氯乙烯的两种方法

氯乙烷·····

乙烯氧氯化制氯乙烯

氯乙烯是最重要的单体之一,主要用于生产聚氯乙烯。就产量而言,在乙烯系列高聚物中聚氯乙烯仅次于聚乙烯居第2位。氯乙烯也能与1-1-二氯乙烯、醋酸乙烯、丙烯酸甲酯、丁二烯和丙烯腈等共聚。此外,氯乙烯还用作冷冻剂。
1. 氯乙烯生产方法评述
在氯乙烯生产历史上,曾出现过以下4种生产方法。
(1)乙炔法 这是20世纪50年代前氯乙烯的主要生产方法,中国至今还有一些化工企业仍采用本法生产氯乙烯。

乙炔转化率97%~98%,氯乙烯产率80%~95%,主要的副产物是1-1-二氯乙烷,它是由氯乙烯与过量的氯化氢经加成反应生成的。反应中为保证催化剂HgCl2不被乙炔还原成低价汞盐Hg2Cl2或金属汞,氯化氢是过量的,过量以不超过15%为宜。乙炔法技术成熟,反应条件缓和,设备简单,副产物少,产率高。因为用氯化氢作原料,适合在以氯化氢为副产物的企业(例如电化厂)组织生产。本法的主要缺点是乙炔价贵,催化剂含汞有毒,不仅损害工人身体健康,还会污染环境。
(2)乙烯法 这是20世纪50年代后发展起来的生产方法。乙烯与氯经加成反应生成二氯乙烷:

二氯乙烷再在500~550摄氏度下热裂解或在1.0MPa,140~145摄氏度下经碱分解制得氯乙烯:

乙烯已能由石油烃热裂解大量制造出来,价格比乙炔便宜,催化剂毒害比氯化汞小得多。但氯的利用率只有50%,另一半氯以氯化氢的形式从热裂解气中分离出来后,由于含有有机杂质,色泽和纯度都达不到国家标准,它的销售和利用问题就成为工厂必须解决的技术经济问题,虽然也可用空气或氧把氯化氢氧化成氯气重新使用,但设备费和操作费均较高,导致氯乙烯生产成本提高。
(3)联合法 是上述两法的改良。目的是用乙炔来消耗乙烯法副产的氯化氢。本法等于在工厂中并行建立两套生产氯乙烯的装置,基建投资和操作费用会明显增加,有一半烃进料是价格较贵的乙炔,致使生产总成本上升,乙炔法的引入仍会带来汞的污染问题。因此,本法也不甚理想。
(4)氧氯化法 这是1个仅用乙烯做原料,又能将副产氯化氢消耗掉的好方法。现已成为世界上生产氯乙烯的主要方法。

乙烯转化率约95%,二氯乙烷产率超过90%。还可副产高压蒸气供本工艺有关设备利用或用作发电。由于在设备设计和工厂生产中始终需考虑氯化氢的平衡问题,不让氯化氢多余或短缺,故这一方法又称为乙烯平衡法。很显然,这一方法原料价廉易得、生产成本低、对环境友好。但仍存在设备多、工艺路线长等缺点,需要进一步改进。
2. 氧氯化法工艺原理
1928年德国拉希格(Raschig)公司首先开发成功气相氧氯化法,用来由苯制备氯苯:

这是烃类取代氯化中最早应用的氧氯化法。随后又开发成功液相氧氯化法,转化率和选择性都有很大提高。由于由氯苯制造苯酚的工艺路线在20世纪30年代后逐步被异丙苯自氧化法取代,该法没能得到进一步发展。用该法生产氯苯的工厂也已很少。
氧氯化法在低级烷烃的取代氯化以及乙烯经氯解生成三氯乙烯和全氯乙烯中也有应用,但生产规模都不甚大。
氧氯化法在工业上最成功的应用就是由乙烯和氯化氢生产二氯乙烷,它为氧氯化法在其他氯化领域中的应用展现了良好前景。
(1)化学反应 由乙烯用氧氯化法生产氯乙烯包括乙烯氯化、乙烯氧氯化和二氯乙烷裂解3个工序。在这里仅讨论乙烯氧氯化部分。
氧氯化的主反应为:

氧氯化的主要副反应有3种。
①乙烯的深度氧化

C2H4+2O2→2CO+2H2O
C2H4+3O2→2CO2+2H2O
②生成副产物1.1.2 -三氯乙烷和氯乙烷

此外,尚有少量的各种饱和或不饱和的一氯或多氯衍生物生成,例如三氯甲烷、四氯化碳、氯乙烯、1,1,1-三氯乙烷、顺式1,2-二氯乙烯等,但总量不多,仅为1,2-二氯乙烷生成量的1%。
(3)反应机理 关于乙烯氧氯化反应的机理尽管在国内、外已作了许多研究工作,但至今仍未有定论,主要有以下两种机理:
①氧化还原机理日本学者藤堂、官内健等认为,氧氯化反应中,通过氯化铜的价态变化向作用物乙烯输送氯。反应分以下三步进行:
C2H4+2CuCl2→C2H4Cl2+Cu2Cl2
Cu2Cl2+1/2O2→CuCl2·CuO
CuCl2·CuO+2HCl→2CuCl2+H2O
第1步是吸附的乙烯与氯化铜反应生成二氯乙烷并使氯化铜还原为氯化亚铜。该步是反应的控制步骤;第2步是氯化亚铜被氧化为氯化铜和氧化铜的络物;第3步是络合物与氯化氢作用,分解为氯化铜和水。提出此机理的依据是a)乙烯单独通过氯化铜催化剂时有二氯乙烷和氯化亚铜生成;(b)将空气或氧气通过被还原的氯化亚铜时可将其全部转变为氯化铜;(c)乙烯浓度对反应速度影响最大。
因此,让乙烯转变为二氯乙烷的氯化剂不是氯,而是氯化铜,后者是通过氧化还原机理将氯不断输送给乙烯的。
②乙烯氧化机理根据氧氯化反应速度随乙烯和氧的分压增大而加快,而与氯化氢的分压无关的事实,美国学者R.V.Carrubba提出如下机理:

式中a表示催化剂表面的吸附中心;HCl(a),O(a),C2H4(a)表示HCl,O和C2H4的吸附态物种;反应的控制步骤是吸附态乙烯和吸附态氧的反应。
氧氯化早期研究中还有人提出,氯化氢在氯化铜催化下氧化生成氯气,再由氯气与乙烯反应生成二氯乙烷的反应机理。
(3)反应动力学 根据上述反应机理,在氯化铜为催化剂时由实验测得的动力学方法为:

式中:pc,ph,po分别表示乙烯、氯化氢和氧的分压。
由上列2个动力学方法可以看出,乙烯的分压对反应速度的影响最大,通过提高乙烯的分压可有效地提高1,2-二氯乙烷的生成速度。相比之下,氯化氢分压的变化对反应速度的影响则小得多。氧的分压超过一定值后,对反应速度没有影响,在较低值时,氧分压的变化对反应速度的影响也是比较明显的。这2个动力学方程式与前述的2种反应机理基本上是吻合的。
(4)催化剂 早期的研究表明,金属氯化物可用作氧氯化催化剂,其中以氯化铜的活性为最高,工业上普遍采用的是负载在γAl2O3、硅酸铝上的氯化铜催化剂。催化剂上铜的含量对反应转化率和选择性都有影响,铜含量增加,转化率提高,但深度氧化生成CO2的量增加,经实验确定,铜含量5%~6%即可。此时,氯化氢转化率可接近100%,生成的CO2量不多。这种单组分催化剂虽有良好的选择性,但氯化铜易挥发,反应温度愈高,氯化铜的挥发流失量愈大,催化剂活性下降愈快,寿命愈短。为了阻止或减少氯化铜催化剂活性组分的流失,在催化剂中添加了第2组分氯化钾,变成双组分催化剂。虽然反应活性有所降低,但催化剂的热稳定性却有明显提高。这很可能是氯化钾与氯化铜形成了不易挥发的复盐或低熔混合物,因而防止了氯化铜的流失。为了提高双组分催化剂的活性,在催化剂中加入稀土金属氯化物,如氯化铈、氯化镧等,既提高了催化活性,又提高了催化剂的寿命,催化剂也就由双组分变为多组分。

图5-2-01 温度对反应速度影响

图5-2-02
温度对选择性的影响(以氯计)

图5-2-03
温度对乙烯燃烧反应影响
氧氯化反应器有固定床和流化床2种,采用固定床时,将已成型的γAl2O3载体用浸渍法将活性组分浸渍上去,经干燥和通空气活化,即可投入使用。对流化床催化剂,用γAl2O3微球浸渍活性组分。亦可将硅铝酸溶胶与活性组分混合后加入胶凝剂,用喷雾干燥法成型制备流化床微球催化剂。
(5)工艺条件的选择
①反应温度在铜含量为12%(w)的CuCl2/γAl2O3催化剂上研究了反应温度与反应速度、选择性和乙烯燃烧反应的影响,结果如图5-2-01、图5-2-02和图5-2-03所示。由图5-2-01可见,开始阶段反应速度随温度的升高而迅速上升,到250摄氏度后逐渐减慢,到300摄氏度后开始下降。因此,反应温度不是愈高愈好,而是有一个适宜范围。由图5-2-02可见,反应选择性在温度上升的开始阶段,也随温度的升高而上升,在250摄氏度左右达到最大值后逐渐下降,这说明,就选择性而言,也有一个适宜范围。图5-2-03示出的是乙烯深度氧化副反应与反应温度的关系。图上曲线表明,270摄氏度前,随反应温度的升高,乙烯深度氧化副反应的速度增长还比较缓慢,270摄氏度后,乙烯深度氧化速度则快速增长。从催化剂的使用角度来看,随着反应温度的升高,催化剂活性组分CuCl2因挥发流失的量增加,催化剂失活的速度加快,使用寿命缩短。从操作安全角度来看,由于乙烯氧氯化是强放热反应,反应热可达251 kJ/mol,反应温度过高,主、副反应,特别是乙烯深度氧化副反应释放出的热量增加,若不能及时从反应系统中移走,由于系统热量的积累,会促使反应温度进一步升高。如此恶性循环,导致发生爆炸或燃烧事故。因此,在满足反应活性和选择性的前提下,反应温度应当愈低愈好。具体的反应温度由选用的催化剂决定,对CuCl2KCl/γAl2O3催化剂而言,流化床使用的温度为205~235摄氏度,固定床为230~290摄氏度。
②反应压力高压对氧氯化法的反应速度和选择性有不利影响,但在实际的操作温度下,在1.0MPa以下,压力对反应速度和选择性几乎没有什么影响。因此,选用常压或低压操作均可。考虑到加压可提高设备利用率及对后续的吸收和分离操作有利,工业上一般都采用在低压下操作。
③配料比乙烯、氯化氢和空气之比必须保证使乙烯过量3%~5%。氧也应稍微过量以保证催化剂氧化还原过程的正常进行,但氯化氢不能过量,因为过量的氯化氢会吸附在催化剂表面使催化剂颗粒胀大,视密度减小。如果采用流化床反应器,由于催化剂颗粒胀大会使床层急剧升高,甚至还会发生节涌现象。乙烯不能过量太多,否则会使乙烯深度氧化反应加剧,尾气中CO和CO2增多,反应选择性下降,氧过量太多,也会促使乙烯深度氧化反应的加剧。在原料配比中还要求原料气的组成在爆炸极限范围外,以保证安全生产。工业上采用的配比为:乙烯:氯化氢:氧=1:2:0.5(mol比)。
④原料气纯度采用的空气只需经过滤、洗涤和干燥,除去少量固体杂质和SO2、H2S及水分后即能应用;氯化氢气体由二氯乙烷裂解工序来,常含有乙炔.为此,氯化氢气体与氢气混合后先在一个加氢反应器中脱炔,然后才能进入氧氯化反应器;原料乙烯中的乙炔、丙烯和C4烯烃的含量必须严格控制,因它们比乙烯活泼,也会发生氧氯化反应,生成四氯乙烯、三氯乙烯、1,2-二氯丙烷等多氯化物,给产品的提纯增加难度。同时它们也更容易发生深度氧化反应,释放出的热量会促使反应温度的上升,给反应带来不利影响。一般要求原料乙烯中乙烯含量在99.95%(m)以上。表5-2-02示出的是中国氯乙烯用原料乙烯的规格。
表5-2-02
中国氯乙烯用原料乙烯的规格













C2H4

CH4+C2H6

C2H2

99.95%

500 ppm

10 ppm

C2S

S(按H2S计)

H2O

100 ppm

5 ppm

15 ppm

⑤停留时间停留时间对HCl转化率有影响。实验表明,停留时间达10 s时,氯化氢的转化率才能接近100%,但停留时间过长,转化率会稍微下降,这是因为1,2-二氯乙烷裂解产生氯化氢和氯乙烯之故。停留时间过长不仅使设备生产能力下降,而且副反应也会加剧,导致副产物增多,反应选择性下降。
图5-2-04 PPG化学工业公司氧氯化法生产氯乙烯的工艺流程
1.直接氯化反应器;2.气液分离器;3.氧氯化反应器;4.分离器;5.脱轻馏分塔;6.脱重馏分塔;7.裂解炉;8.急冷塔;9.氯化氢回收塔;10.氯乙烯精馏塔
3. 平衡型氯乙烯生产工艺流程
图5-2-04所示为PPG化学工业公司氧氯化法生产氯乙烯的工艺流程,由于二氯乙烷热裂解产生的氯化氢全部在氧氯化反应中消耗掉,故又称为平衡型氯乙烯生产工艺流程。流程由三大工艺组成:乙烯液相加成氯化生成1,2-二氯乙烷;乙烯气相氧氯化生成1,2-二氯乙烷;1,2-二氯乙烷热裂解生成氯乙烯。
乙烯液相加成氯化的反应条件为:反应温度50摄氏度左右,催化剂为FeCl3,它在氯化液中的浓度维持在250~300 ppm(0.025%~0.03%),乙烯与氯气的摩尔比为1.1:1,即乙烯是过量的。
乙烯气相氧氯化的反应条件为:反应温度225~290摄氏度,压力为1.0MPa,采用CuCl2/γAl2CO3或改良的CuCl2-KCl/γAl2O3为催化剂,催化剂中铜含量在5%~6%(折算成CuCl2为11%~13%),乙烯:氯化氢:氧=1:2:0.5(mol比)。
由加成氯化和氧氯化生成的粗二氯乙烷进入脱轻组分塔和脱重组分塔。轻组分中含有微量氯化氢气体,需经洗涤后方可利用。重组分中含有较多的二氯乙烷,需经减压蒸馏回收二氯乙烷后作进一步处理。所得二氯乙烷纯度很高,可达99%左右。进入热裂解炉,操作条件为:温度430~530摄氏度,压力2.7MPa,催化剂为浮石或活性炭。反应转化率可达50%~60%,氯乙烯选择性为95%,热裂解产物在氯化氢分馏塔蒸出纯度达99.8%的氯化氢,内含炔烃,若有必要,还须经加氢脱炔后才能用作氧氯化原料;在氯乙烯分馏塔中,塔顶馏出纯度为99.9%的成品氯乙烯、塔釜二氯乙烷内含有热裂解生成的重组分,送二氯乙烷精制工序处理。
本流程中采用氧气而不是空气作氧化剂,优点是:反应后多余的乙烯经冷却、冷凝和分离后仍可回氧氯化反应器循环使用,乙烯利用率比空气作氧化剂时高;空气作氧化剂时尾气中乙烯浓度低,仅为1%左右。用焚烧法处理时需消耗燃料,用氧气作氧化剂时,排出的尾气数量很小,但其中乙烯浓度高,用焚烧法处理不需外加燃料;由于配置的原料气中不含氮气,乙烯在原料气中的浓度提高,有利于提高反应速度和提高催化剂的生产能力,反应器也可做得小一些,从而节省设备制造费用;氧气作氧化剂时由于尾气数量少,不需用溶剂吸收、深冷的办法来回收尾气中少量二氯乙烷,简化了流程,减少了设备投资费用;对固定床反应器而言,氧气作氧化剂时,热点不明显,因而1,2-二氯乙烷的选择性高,氯化氢的转化率亦高,而空气作氧化剂时则相反。表5-2-03列出了两者的比较结果。
表5-2-03
固定床乙烯氧氯化结果比较
乙烯转化为各物料的选择性,%

空气氧氯化法

氧气氧氯化法

1,2-二氯乙烷
氯乙烷
CO+CO2
1,1,2-三氯乙烷
其他氯衍生物

95.11

1.73

1.78

0.88

0.50

97.28

1.50

0.68

0.08

0.46

HCl的转化率,%

99.13

99.83

现在,有不少大型化工企业都建有空气分离装置,氧气的供应已不存在问题,这为氧气作氧化剂的乙烯氧氯法提供了发展良机。氧气氧氯化法的消耗定额(以生产1 t二氯乙烷为基准)为:乙烯(100%)287 kg,氯化氢(100%)742 kg,氧气(100%)177 kg。
图5-2-05所示为氧氯化法生产氯乙烯的物料平衡图。

图5-2-05 平衡型的氯乙烯生产组织形式*
图中的数字是各种物料的实际重量比例数
4. 氧氯化反应器
不论是空气氧氯化还是氧气氧氯化,都可采用固定床或流化床反应器。
(1)固定床氧氯化反应器

图5-2-06
流化床乙烯氧氯化反应器构造示意图
1.乙烯和HCl入口;2.空气入口;3.板式分布器;4.管式反应器;5.催气剂入口;6.反应器外壳; 7.冷却管组;8.加压热水入口;9、11、12.旋风分离器;10.反应气出口;13.人孔;14.高压水蒸气出口
这种反应器结构与普通的固定床反应器基本相同,内置多根列管,管内填充颗粒状催化剂,原料气自上而下流经催化剂层进行催化反应。管间用加压热水作载体,副产一定数量的中压水蒸气。
固定床反应管存在热点,局部温度过高使反应选择性下降,活性组分流失加快,催化剂使用寿命缩短,为使床层温度分布比较均匀,热点温度降低,工业上常采用三台固定床反应器串联:氧化剂空气或氧气按一定比例分别通入三台反应器。这样每台反应器的物料中氧的浓度较低,使反应不致太剧烈,也可减少因深度氧化生成的CO和CO2的量,而且也保证了混合气中氧的浓度在可燃范围以外,有利安全操作。
(2)流化床氧氯化反应器 流化床反应器反应温度均匀,不存在热点,且可通过自控装置控制进料速度,使反应器温度控制在适宜范围内。因此对提高反应选择性有较大好处。反应产生的热量可用内设的热交换器及时移走。流化床氧氯化反应器的构造示意于图5-2-06。
空气(或氧气)从底部进入,经多喷嘴板式分布器均匀地将空气(或氧气)分布在整个截面上。在板式分布器的上方设有C2H4和HCl混合气体的进口管,此管连接有与空气分布器具有相同数量喷嘴的分布器,而且其喷嘴恰好插入空气分布器的喷嘴内。这样就能使两股进料气体在进入催化床层之前在喷嘴内混合均匀。
在反应段内设置了一定数量的直立冷却管组、管内通入加压热水,籍水的汽化以移出反应热,并副产中压蒸气。在反应器上部设置三组三级旋风分离器,用以回收反应气夹带的催化剂。催化剂的磨损量每天约为0.1%,需补充的催化剂自气体分布器上部用压缩空气送入反应段。
由于氧氯化有水产生(乙烯深度氧化也有水产生),如反应器的一些部位保温不好,温度过低,当达到露点温度时,水就会凝结出来,溶入氯化氢气体生成盐酸,将使设备遭受严重腐蚀。因此反应器的保温相当重要。另外,若催化剂表面粘附氧化铁时,氧化铁会转化为氯化铁,它能催化乙烯的加成氯化反应,生成副产物氯乙烷(CH3CH2Cl)。因此,催化剂的贮存和输送设备及管路不能用铁质材料。

参考资料:http://bbs.hcbbs.com/viewthread.php?tid=283137

温馨提示:答案为网友推荐,仅供参考
第1个回答  2011-06-09
86100054100%固体的光熟化的溶剂基含腈涂料组合物及制备光熟化涂料组合物的方法
86100056含非还原糖的环糊精及其制备方法
86100059烯类水悬浮聚合和共聚中控制颗粒大小和孔隙度的体系
86100067乙烯系单体的聚合方法
86100080带有PEO吸墨层的喷墨记录版
86100089一种可擦性书写油墨的组成
86100106氯乙烯系树脂的制造方法
86100176低温下具有柔性的工业共聚醚酰胺
86100185拒水性织物涂层防水加工剂制法
86100205橡胶组合物
86100216由杜仲叶或皮提取杜仲胶的方法
86100232一种电子器件封装用的环氧模塑料成型工艺
86100242抗冷流聚合物粉料的制造
86100270发泡和硫化的聚合物共混体的制法
86100352易浸型聚丙烯薄膜平膜生产工艺
86100355烯烃聚合反应的催化剂组份.催化剂和聚合方法
86100452氯化聚烯烃的制备方法
86100457隔声、阻尼、防辐射材料的制造方法
86100477以六亚甲基二胺,己二酸,任选至少一种其它短链二元羧酸和二聚酸制备共聚多酰胺的工艺*
86100493无溶剂树脂组合物
86100542制备水解聚丙烯腈的方法
86100550氟塑料合金及其制造
86100576应用减低流动阻力的添加物的方法和装置
86100636减少α-烯烃溶液聚合方法中的异构作用
86100648减少α--烯烃类溶液聚合方法中的异构作用
86100665二氢喹啉类橡胶防老剂的工艺
86100667α-烯烃溶液法聚合中催化剂的减活性
86100706固相碱金属硅酸盐复合泡沫材料
86100766一种无毒淬火剂的生产方法
86100791具有游离末端长链支化的聚丙烯的制备方法
86100803废聚苯乙烯的回收方法
86100856负压常温聚合物浸渍工艺
86100867触变涂料组合物、使用该涂料组合物涂布底材的方法和所得涂覆底材
86100904含有三嗪环或酯基的受阻2-氧代-1,4二氮环烷低聚物和用它稳定的组合物
86100923用于挤出的能交联的混合料
86100925延伸的交联产品的制备
86100961可热恢复制品的温度显示方法
86100983水基脱离涂料组合剂
86100991以环氧树脂和羧基聚酯为主要成份的粉末涂料的制备方法
86100992热塑性复合材料及其生产方法和制品
86101015触变涂料组合物、用此类涂料组合物涂敷基底的方法以及如此获得的涂敷衬底
86101019可转变成良好耐燃性泡沫体的有机聚硅氧烷组合物
86101020含非牛顿胶体分散体系的交联性组合物
86101032氯化氢-氯化锌生产聚合松香的方法
86101033一种聚酯多醇的合成方法
86101069交联型乳胶烘烤腻子
86101111低温等离子体的化学检测方法
86101122浅色石油树脂的制造方法
86101133用乳液共聚合法制备含有异氰酸酯基团及其衍生物侧基的高聚物
86101191废合成橡胶脱硫工艺及其设备
86101237热稳定的烯类聚合物的制备方法
86101246固态聚合物材料的形成
86101384型煤粘结剂
86101389导电性聚合物复合材料,制法及应用
86101398聚合溶剂的净化方法
86101424部分结晶聚酯制品的生产方法
86101431聚丙烯酰胺胶粒的远红外干燥法
86101462生产氯乙烯树脂的一种方法
86101561制备能吸收紫外线的缩聚聚合物的组合物的方法
86101570耐冲击聚酰胺的组成
86101585丙烯酸系弱酸离子交换树脂合成工艺
86101638一种含聚四氟乙烯的轴承材料
86101649由缩聚聚合物制备定形制品的方法
86101680一种低交联、高交换容量、高机械强度的阴离子交换树脂的生产工艺
86101723液相色谱用高分子均匀微球及制备
86101762具有高含量丙烯酸酯弹性体的可浇聚氯乙烯的生产方法
86101889同时进行乙烯二聚反应和乙烯与二聚反应产物的共聚反应的方法
86101898微珠回向反射可剥性涂膜层的制造方法
86101978一种可交联的含氟共聚物的制备方法
86101979采用新型羟丙基甲基纤维素醚作为悬浮剂聚合氯乙烯的方法
86102001强酸性阳离子交换催化剂的处理方法
86102007以邻二甲苯或萘的催化氧化产物直接生产增塑剂
86102010可溶张聚合物共混物及其制备方法与以此为基料制得的产品
86102064液体涂料组分和用该组分涂布基体的方法
86102129新型的高稳定性石腊乳液
86102185含有聚酰胺的模制材料
86102197硬聚氯乙烯型件的粘合剂
86102200含有聚酯的模制材料
86102214抗静电组合物及其制品
86102297聚合物组合物
86102325环氧树脂组合物
86102381制造苯乙烯聚合物泡沫的方法以及用此方法制造的泡沫
86102385以聚丙烯为基料的树脂组合物
86102386使基体表面具有防粘性的方法
86102481以沥青和再生橡胶粉料为基本成份的覆盖混合物
86102487紫菜加工用高模量聚丙烯编织物
86102488本体生产以氯乙烯为基本成分的聚合物和共聚物的工艺及立式高压釜
86102498一种制备高分子量多胺组合物的方法
86102520含次磺酰胺促进剂胶料性能的改进方法
86102546用甲基六氢苯二甲酸酐制造电气用浸渍树脂方法
86102616阻燃性树脂组成物
86102635沥青材料及其应用
86102650一种环氧树脂预混物
86102709聚丙烯基质树脂的配方
86102712沥青材料及其应用
86102719关于阻燃性树脂组成物
86102731含100%固体环氧腈涂料配方及其制备方法
86102824标准胶干燥的方法和设备
86102878聚合合成物的连续处理方法
86102891可固化组合物
86102907烯烃制品粘接剂
86102949速止游离基聚合的方法和稳定的树脂组合物
86102967制备(甲基)-丙烯酸脂的方法
86103126微细胶囊分散液的制造方法
86103179水可固化的聚氨酯聚合物的制备方法及其应用
86103183热塑性丙烯酸聚酯树脂
86103219聚苯乙烯粘接剂的合成方法
86103237高聚物温度敏感材料
86103263高分子涂料的激光化学固化方法
86103269以二氧化硅和氯化镁为基础的载体,其制备方法及由此载体出发制得的催化剂
86103288改进了的制备医用交联葡聚糖颗粒聚合物的方法
86103327丁二烯聚合和共聚的改进方法
86103331防污涂料的基料
86103346制备高体密度乙烯类树脂的方法
86103350改进的丁二烯聚合或共聚方法
86103356用于烯烃聚合催化体系的一种过渡金属组成物的制备方法
86103422模制制动片
86103442低摄水量的热塑性聚酰胺膜塑材料
86103465由1-(1-异氰酸基-1-甲基)乙基-3-或4-(1-甲基)乙烯基苯制备官能化单体的方法法)
86103485热塑性弹性体组合物
86103607可用于糊的悬浮聚氯乙烯制造方法
86103692玻璃纤维增强的聚丙烯树脂组合物
86103808含芳香基醚酮的嵌段聚合物及其制造方法
86103812异戌二烯的聚合方法
86103816一种具有自限温特性电热带生产方法
86103840甲基丙烯酸及其酯类的复合阻聚剂
86103842用于聚酰胺消光的母炼胶
86103847以乙烯聚合物为主的混合液及其制备和使用方法
86103852供高浓度聚合物体系进行聚合反应的反应器
86103892聚烯烃树脂泡沫的制造方法
86103927环氧树脂混合料
86104074可渗合在聚合物中的含有很高粉沫矿物质含量的热塑性组合物
86104081制备三环癸烷的(甲基)丙烯酸衍生物的方法及其应用
86104111高吸水性树脂的制造方法
86104141聚丙烯酸酯类药物缓释材料的制备方法
86104196合成含有N-(2-羟基-3-磺酸丙基)酰胺的聚合物的方法
86104223丁苯乳胶改性酚醛树脂制造工艺
86104233聚丙烯阻燃抗静电母粒及制造方法
86104268聚烯烃填充剂及其制备方法
86104292新的氟化高聚物溶液
86104301一种具有抗血栓形成.溶解纤维蛋白.消炎活性的解聚的硫酸氨基己糖聚糖,其制方法以及
86104340制备透明耐热苯乙烯型共聚物的方法
86104504改进了的丁二烯的聚合或共聚合方法
86104545制备可硫化氟弹性体的方法及其产品
86104577环氧树脂组成物
86104597一种聚合物的速溶方法及装置
86104604捕鼠粘胶及其制作工艺
86104608一种涂布纸的生产方法
86104672相稳定聚酯模制材料
86104710环氧树脂组合物
86104741刺激动物生长的方法
86104757氯化聚丙烯-有机硅胶粘剂的合成
86104759自固化的氨基甲酸乙酯粘结桨料系统
86104775聚烯烃胶粘剂的制备
86104776氯化聚丙稀-丙烯酸酯胶粘剂的合成
86104811聚乙烯醇缩醛类水性粘接剂
86104817化学稳定性好的氟弹体共硫化组合物
86104826改进聚酯纤维及制备方法
86104852利用可水解硅烷制备改性聚烯烃方法
86104877在石油溶剂油中稳定的羧酸聚合物
86104918弹性环氧补强固结化学灌浆材料
86104955含官能化的选择加氢的嵌段共聚物的制备方法
86104970用含纤维素的废料制备重金属捕集剂的方法
86104972含有有限溶混性结晶聚脂的聚氯乙烯复合聚合物及其增强复合材料
86104975对气体和有机液体具有低渗透性的韧性聚对苯二甲酸乙脂制品的加工方法
86104989一种环氧大豆油的生产方法
86105004共聚多酯
86105006转移法镀铝纸生产方法
86105015醇镁球形颗粒的制备方法
形成光学各向异性熔体的以叔丁基氢醌为主要成分的芳族共聚聚酯的制备方法
第2个回答  2011-06-09
一取代 用氯气在光照条件下取代乙烷 副产物较多
二加成 用氯化氢与乙烯加成 产率较高本回答被提问者采纳
第3个回答  2011-06-09
1乙烯和氯化氢在催化剂加热条件下加成
2CH3-CH2-OH+HBr---(一定条件)-->CH3-CH2-Br+H2O

HBr一般用NaBr和硫酸制
第4个回答  2011-06-09
1.乙烷与氯气取代。
2.乙烯与氯气加成,再与氯气取代。