gh4169高温合金用什么刀具加工

如题所述

GH4169(GH169)高温合金用硬质合金刀具加工,

GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。

该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。
GH4169 材料牌号 GH4169(GH169)
GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法 国)
GH4169 材料的技术标准
GJB 2612-1996 《焊接用高温合金冷拉丝材规范》
HB 6702-1993 《WZ8系列用GH4169合金棒材》
GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》
GJB 1952 《航空用高温合金冷轧薄板规范》
GJB 1953 《航空发动机转动件用高温合金热轧棒材规范》
GJB 2612 《焊接用高温合金冷拉丝材规范》
GJB 3317 《航空用高温合金热轧板材规范》
GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》
GJB 3020 《航空用高温合金环坯规范》
GJB 3167 《冷镦用高温合金冷拉丝材规范》
GJB 3318 《航空用高温合金冷轧带材规范》
GJB 2611 《航空用高温合金冷拉棒材规范》
YB/T5247 《焊接用高温合金冷拉丝》
YB/T5249 《冷镦用高温合金冷拉丝》
YB/T5245 《普通承力件用高温合金热轧和锻制棒材》
GB/T14993 《转动部件用高温合金热轧棒材》
GB/T14994 《高温合金冷拉棒材》
GB/T14995 《高温合金热轧板》
GB/T14996 《高温合金冷轧薄板》
GB/T14997 《高温合金锻制圆饼》
GB/T14998 《高温合金坯件毛坏》
GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》
HB 5199 《航空用高温合金冷轧薄板》
HB 5198 《航空叶片用变形高温合金棒材》
HB 5189 《航空叶片用变形高温合金棒材》
HB 6072 《WZ8系列用GH4169合金棒材》
GH4169化学成分:%
C P S Mn Si Ni Cr Cu Al Co Mo Ti Nb Fe
≤0.08 ≤0.015 ≤0.02 ≤0.35 ≤0.35 50.0~55.0 17.0~21.0 ≤0.30 0.20~0.80 ≤1.00 2.80~3.30 0.65~1.15 4.75~5.50 余量
余量该合金的化学成分分为3类:标准成分、优质成分、高纯成分。优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增加强化相的数量,提高抗疲劳性能和材料强度。同时减少有害杂质和气体含量。高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。
核能应用的GH4169合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。
当ω(B)≤0.002%时,为与宇航工业用的GH4169合金加以区别,合金牌号为GH4169A。
GH4169 热处理制度
合金具有不同的热处理制度,以控制晶粒度、控制δ相形貌、分布和数量,从而获得不同级别的
力学性能。合金热处理制度分3类:
Ⅰ:(1010~1065)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h 炉冷至620℃±5℃,8h,空冷。
经此制度处理的材料晶粒粗化,晶界和晶内均无δ相,存在缺口敏感性,但对提高冲击性能和抵抗低温氢脆有利。
Ⅱ:(950~980)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h 炉冷至620℃±5℃,8h,空冷。

经此制度处理的材料有δ相,有利于消除缺口敏感性,是最常用的热处理制度,也称为标准热处理制度。
Ⅲ:720℃±5℃,8h,以50℃/h炉冷至620℃±5℃,8h,空冷。
经此制度处理后,材料中的δ相较少,能提高材料的强度和冲击性能。该制度也称为直接时效热处理制度。
GH4169 品种规格和供应状态
可以供应模锻件(盘、整体锻件)、饼、环、棒(锻棒、轧棒、冷拉棒)、板、丝、带、管、不同形状和尺寸的紧固件、弹性元件等、交货状态由供需双方商定。丝材以商定的交货状态成盘状交货。
GH4169 熔炼和铸造工艺
合金的冶炼工艺分为3类:真空感应加电渣重熔;真空感应加真空电弧重熔;真空感应加电渣重熔加真空电弧重熔。可根据零件的使用要求,选择所需的冶炼工艺,满足应用要求。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-03-14

GH4169合金是一种变形高温合金,用立方氮化硼或者YG8刀具加工。

GH4169沉淀强化镍基高温合金

GH4169特性及应用领域概述:

该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能良好。能够制造各种形状复杂的零部件,在宇航、核能、石油工业及挤压模具中,在上述温度范围内获得了极为广泛的应用。  

GH4169工艺性能与要求:   

1、因GH4169合金中铌含量高,合金中的铌偏析程度与治金工艺直接有关。2、为避免钢锭中的元素偏析过重,采用的钢锭直径不大于508mm。3、经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。4、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。5、合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接

第2个回答  2022-11-11

GH4169沉淀强化镍基高温合金,镍基合金材料,用硬质合金刀具加工

GH4169特性及应用领域概述(勃西曼特钢摘录):

该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能良好。能够制造各种形状复杂的零部件,在宇航、核能、石油工业及挤压模具中,在上述温度范围内获得了极为广泛的应用。

GH4169相近牌号:

GH169、Inconel 718、UNS NO7718(美国)、NC19FeNb(法国)、W.Nr.2.4668(德国)

GH4169其他军标标准:

GJB 2611A 航空用高温合金冷拉棒材规范

GJB 2612 焊接用高温合金冷拉丝材规范

GJB3318A 航空用高温合金冷轧带材规范

GJB 3527 弹簧用高温合金冷拉丝材规范

GJB 5280 航空发动机用高温合金盘形锻件规范

GJB 5301 航空发动机用高温合金环形件规范

GJB 712A 航天用GH4169高温合金锻制圆饼规范

HB/Z 140 航空用高温合金热处理工艺

Q/5B 4040优质GH4169合金锻件

Q/3B 4048 (Q/5B 4029、抚高新13、协上五高22、C3S280)优质GH4169合金棒材

Q/3B 4056 (Q/5B 4009、抚高新11、协上五高24)高强GH4169合金压气机盘锻件

Q/3B 4054 (RJTO-10、抚高新10、协上五高23)直接时效GH4169合金压气机盘、涡轮盘锻件

Q/3B 4050 (Q/5B 4037、抚高新9、协上五高32) GH4169合金厚板、薄板和带材

Q/3B 4052 GH4169 合金毛细管材

GH4169热处理制度:

摘自HB/Z 140、GJB 712A、GJB 5301、Q/3B 4052 和Q/3B 4054,分标准热处理和直接时效处理两种。

标准热处理

a)盘形锻件、环形件,(950~980)℃+10℃X1h/OQ(或AC、或 WQ)+720℃土10℃X8h/FC(50℃士10℃/h)→620℃+10℃X8h/AC, HB 461~341;

b)航天用锻制圆饼,(950~1010)℃士10℃X1h/AC+720℃+10℃ X8h/FC(50℃/h)→620℃+10℃X8h/AC(或 FC);

c)丝材,955℃士10℃ × 1h/AC+720℃ 士10℃ ×8h/FC(50℃ 士10℃/h)→620℃士5℃X(7~8) h/ AC ,HRC≥ 32

d)棒材和锻件,(950~980)℃士10℃X1h/AC+720℃+5℃ X 8h/FC(50℃士10℃/h)→620℃士5℃X8h / AC, HB ≥346;

e)板材、焊接件:

制度I:(940~960)℃/AC+(710~730)℃X(8~8.5)h/FC(50℃士10℃/h)→(615~620)℃X(8~8.5)h/AC,其中固溶保温时间: δ (d)≤3mm, (25~30) min; δ(d)3mm~5mm, (30~35) min;

制度I:中间退火,(940~960)℃X(15~20)min/AC;

f)管材,955℃士10℃ X30min/AC(或风冷)+720℃士10℃X8h/FC(50℃土10℃/h)→620℃士10℃,使总保温时间不少于18h,空冷或风冷。

直接时效处理

盘形锻件直接时效制度:720℃土10℃X8h/FC(50℃士10℃/h)→620℃士10℃X8h/AC。

GH4169 金相组织结构:

该合金标准热处理状态的组织由γ基体γ'、γ'、δ、NbC相组成。

GH4169工艺性能与要求:

1、因GH4169合金中铌含量高,合金中的铌偏析程度与冶金工艺直接有关。
2、为避免钢锭中的元素偏析过重,采用的钢锭直径不大于508mm。
3、经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。
4、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。
5、合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。

GH4169主要规格:

GH4169无缝管、GH4169钢板GH4169、圆钢、GH4169锻件、GH4169法兰、GH4169圆环、GH4169焊管、GH4169钢带、GH4169直条、GH4169丝材及配套焊材、GH4169圆饼、GH4169扁钢、GH4169六角棒、GH4169大小头、GH4169弯头、GH4169三通、GH4169加工件、GH4169螺栓螺母、GH4169紧固件。

第3个回答  2021-09-01
一般推荐:YG6X、YD15、YS2T、YL1Q1等
一、GH4169(Inconel718)高温合金的加工难点
GH4169(Inconel718)高温合金合金化程度高,热导性能极差,切削温度高,切削力大,加工硬化现象严重,硬质点多,加工效率低,刀具磨损严重,切削加工成本较高。
如果使用硬质合金刀具对其进行加工,会导致刀具磨损严重,加工表面质量难以保证,且易粘附,换刀频率高。因此使用CBN刀具是一个更好的选择,可以提高生产率,减少刀具磨损,提高零件表面质量。
二、CBN刀具加工GH4169(Inconel718)高温合金的优势
1、CBN刀具硬度高,无惧高温合金硬化现象。CBN刀具的硬度很高,一般约8000~9000HV,因此即使加工高硬度的高温合金,CBN刀具也能轻松实现高速切削。
2、CBN刀具耐热性好,可承受较高切削温度。CBN刀具的耐热性为144~1500℃,虽然在高温合金切削中会产生大量的切削热,可能高达1000℃下左右,但依然不会影响CBN刀具的正常使用。
3、CBN刀具耐磨性好,具有很好的化学稳定性。高温合金中含有很多碳化物、氮化物、硼化物及金属间化合物,构成细微的硬质点,会造成刀具磨损。而CBN刀具具有极强的耐磨性,大大减少了换刀次数,提高了加工效率。
三、CBN刀具加工GH4169(Inconel718)高温合金工件案例
虽然GH4169(Inconel718)高温合金的切削加工性能极差,是塑性难切削材料中较难切削的,但是只要选择合适的加工刀具,选择合理的切削参数,也是可以顺利完成切削加工的。
GH4169 外圆车削试验
1 试验条件
试件材料为GH4169 高温合金,采用圆棒试件,直径30mm,长50mm。试验机床为CK7525 数控车床,最大主轴转速为3000r/min,冷却方式采用乳化液冷却。刀具选用SANDVIK 公司生产的PVD-TiAlN涂层硬质合金刀片。车削试验现场如图1所示。表面粗糙度采用TR240 表面粗糙度测试仪进行测量,在已加工表面上共测量5 个点,然后求平均值。表面形貌采用VECOO 三维形貌测试仪进行测量。

2 试验方案
采用3因素3水平正交试验的方法进行GH4169 高温合金的外圆车削试验。每一个试件进行切削试验之前,都采用同样的切削参数去除0.5mm 的厚度,以消除不均匀的表面,保证试件的一致性。试验方案及表面粗糙度测试结果如表1所示。

试验结果与讨论
1 表面粗糙度经验公式的建立
在机床特征和刀具特征确定的前提下,基于正交试验方法获得的表面粗糙度的经验模型一般采用如下形式[13]:

其中,C 为取决于被加工材料和切削条件的系数,a1,a2,a3分别为指数。根据表1表面粗糙度的测试结果,采用多元线性回归法进行拟合,最终得到表面粗糙度的经验公式为:

运用极差分析法可以确定表面粗糙度影响因素的主次关系,极差统计如表2所示。极差最大的列,对应因素对表面粗糙度的影响最大,即进给量是影响高温合金车削加工中表面粗糙度的最主要因素,其次是切削速度,切削深度的影响最小。
nextpage
2 切削参数对表面粗糙度的影响规律
根据表2做出各切削参数对表面粗糙度的直观分析图(图2)。由此可以分析切削参数对表面粗糙度的影响规律。

如图2(a)所示,随着切削速度增加,表面粗糙度减小。切削速度的变化会引起切屑形成过程的变化,而表面粗糙度在很大程度上与切屑形成过程,尤其是与积屑瘤现象密切相关。随着切屑的形成,刀具前面切削的压力增加,由于内外摩擦力的作用,切屑下层出现速度梯度,上下层金属出现相对移动,同时产生大量的热,在刀具前面形成一个“停滞区”,为形成积屑瘤创造了条件。产生的刀瘤会使加工表面粗糙度恶化。随着切削速度增大,切削区温度提高,使金属韧性增加,形成“停滞区”的条件就变坏,在切削热的高温作用下,金属边层软化,使摩擦系数降低,刀瘤软化并且有很大的塑性,以至于流过的切屑将它与“停滞区”的一部分金属分子带走,于是刀瘤变小了,表面粗糙度进一步降低。
如图2(b)所示,随着进给量增加,表面粗糙度急剧增加。这是因为随着进给量增加,切削厚度增加,表面金属塑性变形的体积增加,大量变形的金属从副刀刃方向排出,表面粗糙度因而迅速上升。
如图2(c)所示,随着切削深度增加,表面粗糙度变化很小,从0.898µm 增加到1.033µm。一般来图1 车削试验现场说,切削深度对加工表面粗糙度的影响不大。切削深度对加工表面质量的影响主要是由其对切削力的影响而引起的,增大切削深度会使切削力随之增大,这样使切屑与前刀面的挤压更严重,反应更强烈,会使切屑很容易粘结在刀具的前刀面上,形成积屑瘤。另外,切削深度较大也会引起较大加工表面变形及较大的振动等,因此随着切削深度的增大,加工表面粗糙度将随之增大。
3 切削参数灵敏度分析
根据文献[12] 中相对灵敏度的计算方法,计算得到切削速度、进给量和切削深度的相对灵敏度分别为-0.623、1.303 和0.083。分析可知,表面粗糙度对进给量的变化最为敏感,对切削速度的变化敏感次之,对切削深度的变化不敏感。
根据文献[12] 中绝对灵敏度的计算方法,获得各切削参数的绝对灵敏度公式如式(3)所示。

图3为根据式(3)绘制的表面粗糙度对各切削参数的绝对灵敏度曲线。
nextpage
如图3(a)所示,随着切削速度的增加,表面粗糙度对切削速度的绝对灵敏度值减小。在切削速度[80m/min,95m/min] 区间的绝对灵敏度值小于[65m/min,80m/min] 区间,即切削速度在[80m/min,95m/min] 区间时,表面粗糙度的变化相对平缓,切削速度在[65m/min,80m/min] 区间时,表面粗糙度的变化相对陡峭。
如图3(b)所示,随着进给量的增加,表面粗糙度对进给量的绝对灵敏度值增大。在进给量[0.1mm/r,0.15mm/r] 区间的绝对灵敏度值小于[0.15mm/r,0.2mm/r] 区间,即进给量在[0.1mm/r,0.15mm/r] 区间时,表面粗糙度的变化相对平缓,进给量在[0.15mm/r,0.2mm/r] 区间时,表面粗糙度的变化相对陡峭。
如图3(c)所示,随着切削深度的增加,表面粗糙度对切削深度的绝对灵敏度值减小。在切削深度[0.3mm,0.4mm] 区间的绝对灵敏度值小于[0.2mm,0.3mm] 区间,即切削深度在[0.3mm,0.4mm] 时,表面粗糙度的变化相对平缓,切削深度在[0.2mm,0.3mm] 区间时,表面粗糙度的变化相对陡峭。
4 切削参数优选
根据相对灵敏度,以及绝对灵敏度和表面粗糙度随切削参数的变化规律综合优选。优选的参数区间首先保证表面粗糙度越小越好,其次绝对灵敏度尽量变化平缓。由于表面粗糙度对进给量的变化最敏感,所以进给量要重点优选。随着进给量的增加,表面粗糙度增加,绝对灵敏度也增加,所以进给量优选低的区间[0.1mm/r,0.15mm/r],这个区间可以保障表面粗糙度在0.76µm 以内,并且变化比较平缓。表面粗糙度对切削速度的变化较敏感,随着切削速度的增加,表面粗糙度减小,绝对灵敏度也减小,所以切削速度优选高的区间[80m/min,95m/min],这个区间可以保障表面粗糙度在0.95µm 以内,并且变化比较平缓。而表面粗糙度对切削深度的变化不敏感,切削深度对表面粗糙度的影响也比较小,原则上试验参数范围内都可以选择。具体可根据加工工序来选择,粗加工时可以选较大切深,而精加工时取较小值以提高加工精度,降低表面粗糙度。
5 表面形貌分析
高温合金车削加工的三维表面形貌如图4 所示,车削后工件表面产生波浪状的表面纹理,它是车刀与工件相对移动后最终形成的表面形貌,清晰地反映了车刀切削刃的运动轨迹。图4(a)所示的已加工表面,表面粗糙度为0.406µm,最大波峰高度为1.76µm,最大波谷深度为1.39µm;图4(b)所示的已加工表面,表面粗糙度为0.772µm,最大波峰高度为2.79µm,最大波谷深度为1.90µm,从中可以看出,进给量从0.1mm/r 增加到0.15mm/r,已加工表面的最大波峰高度和最大波谷深度均显著增大,表面粗糙度显著恶化,所以在车削加工中进给量的变化对表面粗糙度有至关重要的影响。工件表面完全是由刀具切削刃直接切出来的,复制了刀具切削刃形状,刀具进给运动的轨迹清晰可见,每条均匀间隔突起的棱脊在进给方向的位移量等于每转进给量。工件表面上分布有沿切削运动方向的细小沟槽,这种沟槽一方面是刀具表面上硬质点对工件加工表面的犁耕,另一方面是刀具磨损表面上粗糙沟槽在工件加工表面上的复制。从图中可以看出,棱脊不是一条线,而是变成很多磨损沟槽组成的犁垄带,不仅影响加工表面粗糙度,还反作用于刀具表面,使之产生附加沟槽,加剧刀具磨损。在每一转进给量范围内,靠近刀尖部位的工件表面较为光滑平整,越靠近副后刀面和副切削刃尾部刀具与工件分离处,工件加工表面越粗糙,说明刀具磨损带内磨损状态分布不均匀。刀尖部位紧压工件过渡表面,接触稳定,磨损过程稳定,加工痕迹较平整;副后刀面上,由于副后刀面和切屑锯齿状边缘的影响,离刀尖越远,刀具与工件压紧程度越差,加剧了刀具副后刀面的磨损[14]。

结束语
通过对GH4169 高温合金车削表面粗糙度及表面形貌的研究,得出如下结论。
(1)进给量是影响高温合金车削加工中表面粗糙度的最主要因素,其次是切削速度和切削深度。
(2)表面粗糙度随切削速度的增加而减小,随进给量和切削深度的增加而增大。
(3)表面粗糙度对进给量的变化最为敏感,对切削速度的变化敏感次之,对切削深度的变化不敏感。
(4)切削速度优选80~95m/min的范围,进给量优选0.1~0.15mm/r 的范围,可以保障表面粗糙度在0.95µm 以内[4]。
第4个回答  2021-12-28

GH4169/gh169属于高硬度高耐磨耐高温合金

合金概述:

为奥氏体结构,沉淀硬化后生成的baiY”相使之具有了比较满意的机械性能。在热处理过程中于晶界处生成的δ相使之具有了较好的塑性,具有较好的强度,高温度可达1400°F,耐氧化性能可达1800°F。这种镍合金的高拉伸强度和冲击强度在低温下不会降低,而且也可以很好地焊接。

相近牌号:

GH169(中国)、

NC19FeNb(法国)、

NiCr19Fe19Nb5、Mo3(德国)、

NA 51(英国)

UNS NO7718(美国)

NiCr19Nb5Mo3(ISO)

物理性能:

密度8.2 g/cm3

熔点1260-1340 ℃

化学成分:

C≤0.08

Mn≤0.35

Si≤0.015

P≤0.35

S≤0.015

Cr17~21

Ni50~55

Mo2.8~3.3

Cu≤0.3

Ti0.65~1.15

Al0.2~0.8

Fe余量

Nb4.75~5.5

B≤0.006

在常温下合金的机械性能的小值:

合金固溶处理抗拉强度965Rm N/mm2  屈服强度550RP0.2N/mm2

延伸率30 A5 %  布氏硬度≤363HB

金相结构:

合金为奥氏体结构,沉淀硬化后生成的Y”相使之具有了良好的机械性能。在热处理过程中于晶界处生成的δ相使之具有了较佳的塑性。

耐腐蚀性:

不管在高温还是低温环境,合金都具有极好的耐应力腐蚀开裂和点蚀的能力。合金在高温下的抗yang化性尤其出色。

特性:

1.易加工性

2.在700℃时具有高的抗拉强度、pi劳强度、抗蠕变强度和断裂强度

3.在1000℃时具有高抗yang化性

4.在低温下具有稳定的化学性能

5.良好的焊接性能

应用:

由于在700℃时具有高温强度和良好的耐腐蚀性能、易加工性,可广泛应用于各种高要求的场合。1.汽轮机2.液体燃料3.低温工程4.酸性环境5.核工程