已知函数的定积分为:怎样求这个函数啊!

如题所述

解:用分部积分法求解。

∫arctanxdx/x²=∫arctanxd(-1/x)=-arctanx/x+∫dx/[x(1+x²)]。

而,∫dx/[x(1+x²)]=∫[1/x-x/(1+x²)]dx=ln丨x丨-(1/2)ln(1+x²)+C,

∴∫arctanxdx/x²=-arctanx/x+ln丨x丨-(1/2)ln(1+x²)+C。

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

11)∫1/(1+x^2)dx=arctanx+c

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜