解答:
⑴、由抛物线与X轴的两个交点坐标可以由两根式设抛物线解析式为:
y=a﹙x+1﹚﹙x-3﹚
将B点坐标代人解得:a=1
∴抛物线解析式为:
y=﹙x+1﹚﹙x-3﹚=x²-2x-3
⑵、由y=x²-2x-3=﹙x-1﹚²-4
∴顶点坐标D﹙1,-4﹚,
过D点作Y轴的垂线,垂足为E点,
∴OE=4,DE=1,∴OD=√17
∴sin∠BOD=1/√17;
⑶、令x=0代人抛物线解析式得B﹙0,-3﹚,
连接BC,由B、C两点坐标可以求得BC直线方程为:
y=x-3
设抛物线上一点P﹙m,n﹚,
过P点作BC的平行线PF,且切抛物线﹙直线PF与抛物线只有一个交点﹚,
这时候的P点使△BCP面积最大,
实际是求△BCP面积的最大值,
∴PF直线方程为:y=x+﹙n-m﹚
由PF直线方程与抛物线解析式组成方程组,解得:
x²-3x-3-n+m=0
∴由Δ=﹙-3﹚-4﹙-3-n+m﹚=0
∴①n=﹙4m-9﹚/4,
② n=m²-2m-3
∴由①②方程组解得:m=﹙3±2√3﹚/2,n=[2﹙3±2√3﹚-9]/4
∵P点在第四象限,∴m>0
∴P点坐标为P﹙½﹙3+2√3﹚,﹙4√3-3﹚/4﹚。
温馨提示:答案为网友推荐,仅供参考