自激振荡原理是什么?

书上说的:
假设图示电路中:先通过输入一个正弦波 信号,产生一个输出信号,此时,以极快的速度 使输出信号,通过反馈网络送到输入端,且使 反馈信号与原输入信号“一模一样”,同时切断原输入信号,由于放大器本身不能识别此时的输入究竟来自信号源,还是来自本身的输出,既然切换前后的输入信号“一模一样”,放大器就一视同仁地给予放大,形成: 输出→反馈→输入→放大→输出→反馈→……

这里我不理解:
当输入一个正弦波时,假设在输入到振幅为N时,输出端为M,通过放大器使M变成N,又把这个N送到输入端,N->M->N->M 那不就一直维持在N了吗???为什么是正弦波呢?

自激震荡是指不外加激励信号而自行产生的恒稳和持续的振荡。

从数学的角度出发,它是一种出现于某些非线性系统中的一种自由振荡。

一个典型例子是范达波尔(VanderPol)方程所描述的系统,方程形式为mx¨-f(1-x2)x·-kx=0(m>0,f>0,k>0)。

其中x·和x¨为变量x的一阶和二阶导数

分析表明:当x的值很小时,阻尼f是负的,因而运动发散;当x的值很大时,阻尼f是正的,因而运动衰减。

扩展资料:

一、产生自激振荡条件

1、幅度平衡条件|AF|=1

2、相位平衡条件φA+φF=2nπ(n=0,1,2,3···)其中,A指基本放大电路的增益(开环增益)。

F指反馈网络的反馈系数同时起振必须满足|AF|略大于1的起振条件基本放大电路必须由多级放大电路构成,以实现很高的开环放大倍数。

然而在多级放大电路的级间加负反馈,信号的相位移动可能使负反馈放大电路工作不稳定,产生自激振荡。

负反馈放大电路产生自激振荡的根本原因是AF(环路放大倍数)附加相移.单级和两级放大电路是稳定的,而三级或三级以上的负反馈放大电路。

只要有一定的反馈深度,就可能产生自激振荡,因为在低频段和高频段可以分别找出一个满足相移为180度的频率(满足相位条件),此时如果满足幅值条件|AF|=1,则将产生自激振荡。

因此对三级及三级以上的负反馈放大电路,必须采用校正措施来破坏自激振荡,达到电路稳定工作目的。

二、正弦波振荡电路的组成

从上述分析可知,正弦波振荡电路从组成上看必须有以下四个基本环节。

(1)放大电路:保证电路能够由从起振到动态平衡的过程,是电路获得一定幅值的输出量,实现能量的控制。

(2)选频网络:确定电路的振荡频率,使电路产生单一频率的振荡,即保证电路产生正弦波振荡。

(3)正反馈网络:引入正反馈,使放大电路的输入信号等于反馈信号。

(4)稳幅环节:也就是非线性环节,作用是使输出信号幅值稳定。

在不少实用电路中,常将选频网络和正反馈网络“合二为一”;而且,对于分立元件放大电路,也不再另加稳幅环节,而依靠晶体管特性的非线性起到稳幅作用。

正弦波振荡电路常根据选频网络所用元件来命名,分为RC正弦波振荡电路、LC正弦波振荡电路和石英晶体正弦波振荡电路3种类型。

RC正弦波振荡电路振荡频率较低,一般在1MHz以下;LC正弦波振荡电路振荡频率较高,一般在1MHz以上;石英晶体正弦波振荡电路也可以等效为LC正弦波振荡电路,其特点是振荡频率非常稳定。

参考资料来源:百度百科-自激振荡

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-05-30
自激振荡原理是

接通电源瞬间,由于电路的扰动,放大器输入端得到一个信号,到输出端就被放大了许多倍,输出端的这个大信号又被送到输入端,到输出端就变得更大,如此周而复始,信号越来越大,大到放大器的非线性出现,信号才会稳定在一定的幅度输出。如此就得到稳定的自激输出了。这就是自激震荡产生的过程本回答被网友采纳
第2个回答  2020-11-12

自激振荡电路的工作原理

第3个回答  2020-11-19

第34期 03 互补型自激振荡电路原理解析,振荡的根本原因就在这里了。

第4个回答  2013-07-25
电感 电容充放电存在一个过程