向量数乘运算及其几何意义如下:
向量是由n个实数组成的一个n行1列(n×1)或一个1行n列(1×n)的有序数组;
向量的点乘,也叫向量的 内积、数量积 ,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个 标量 。
对于向量 和向量 :
a和b的点积公式为:
注意:要求一维向量a和向量b的行列数相同。
点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式:
推导过程如下,首先看一下向量组成:
定义向量:根据三角形余弦定理有:
根据关系c=a-b(a、b、c均为向量)有:
即:向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:
根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:
方向基本相同,夹角在0°到90°之间,正交,相互垂直,方向基本相反,夹角在90°到180°之间
两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。
对于向量a和向量b:
其中:根据i、j、k间关系,有:
在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。
在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。
在二维空间中,叉乘还有另外一个几何意义就是:a×b等于由向量a和向量b构成的平行四边形的面积。