有关遗传与变异的资料

有有关遗传与变异的资料吗??

  遗传:
  遗传
  遗传
  (heredity)

  生物亲代与子代之间、子代个体之间相似的现象。

  heredity: The genetic transmission of characteristics from parent to offspring.
  遗传 父母的基因特征传给子女。
  遗传,一般是指亲代的性状又在下代表现的现象。但在遗传学上,指遗传物质从上代传给后代的现象。例如,父亲是色盲,女儿视觉正常,但她由父亲得到色盲基因,并有一半机会将此基因传给他的孩子,使显现色盲性状。故从性状来看,父亲有色盲性状,而女儿没有,但从基因的连续性来看,代代相传,因而认为色盲是遗传的。遗传对于优生优育是非常重要的因素之一。
  为什么会出现遗传这种奥妙的现象呢?19世纪末,科学家才在人体细胞的细胞核内发现了一种形态、数目、大小恒定的物质。这种物质甚至用最精密的显微镜也观察不到,只有在细胞分裂时,通过某种特定的染色法,才能使它显形,因此取名为“染色体”。
  人们发现,不同种生物的染色体数目和形态各不相同,而在同一种生物中,染色体的数目及形状则是不变的,于是有了子女像父母的遗传现象。在总数为46条的染色体中,有44条是男女都一样的,被人们称为常染色体。男性的性染色体为“ XY”,女性的性染色体为“XX”。人体染色体的数量,不管在身体哪个部位的细胞里都是成双成对的存在的,即23对46条染色体,可是惟独在生殖细胞——卵子和精子里,却只剩下23条,而当精子和卵子结合成新的生命——受精卵时,则又恢复为46条。可见在这46条染色体中肯定有23条是来自父亲,另外23条则来自母亲,也就是说,一半来自父亲,一半来自母亲,既携带有父亲的遗传信息,又携带有母亲的遗传信息。所有这些,共同控制着胎儿的特征,等到胎儿长大成人,生成精子或卵子时,染色体仍然要对半减少。如此循环往复,来自双亲的各种特征才得以一代又一代地传递,使人类代代复制着与自己相似的后代。
  那么,染色体又是怎么实现遗传的呢?染色体靠的是它所携带的遗传因子,也就是“基因”,基因是贮藏遗传信息的地方,一个基因往往携带着祖辈一种或几种遗传信息,同时又决定着后代的一种或几种性状的特征。基因是一种比染色体小许多倍的微小的物质,即使在光学显微镜下也不可能看到。它们按顺序排列在染色体上。由染色体将它们带入人体细胞。每条染色体都是由上千个基因组成的。
  人之初都是由一个受精卵经过不断的分裂增殖发育而成的,在这个受精卵里蕴涵着父母的无数个遗传基因。详尽设定了后代的容貌、生理、性格、体质,甚至于某种遗传病,子女就是按照这些特征发育成长的。于是就出现了孩子在某个地方像父亲,某个地方像母亲的情况。
  基因有显性和隐性之分,在一对基因中只有一个是显性基因,其后代的相貌和特征就能表现出来。而隐性基因则只有当成对基因中的两个基因同时存在时,其特征才能表现出来,以人的相貌特征为例,在胚胎形成时,胎儿要分别接受父亲和母亲的同等基因,假如孩子从父亲的基因里继承了卷发,又从母亲的基因里继承了直发,但是他最后却长了一头直发,这是因为,在遗传时直发是显性,卷发是隐性,因此表现为直发。然而,在这个孩子的染色体中仍存在卷发的隐性基因,在他长大成人后,如果他的妻子和他一样,体内也存在卷发的隐性基因,那么他们的孩子就会有一头卷发,表现出隔代遗传的现象。这就是显性基因和隐性基因的区别。
  基因还具有稳定性和变异性。稳定性是指基因能够自我复制,使后代基因保持祖先的样子。变异性是说基因在某种因素的刺激下能够发生变化。如日本人在20世纪40年代一般因遗传缘故,个子较矮小,到60年代之后,日本人注意营养,每日喝奶,又加强锻炼,其后代个子普遍增高,这就是遗传基因向好的方向变异。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2008-03-08
遗传与变异,是生物界不断地普遍发生的现象,也是物种形成和生物进化的基础。
微生物遗传学作为一门独立的学科诞生于40年代,病毒遗传学作为微生物遗传学的重
要组成部分,对于生物遗传和变异的研究起到了重要的促进作用,也为分子遗传学的
发展奠定了基础。病毒的许多生物学特性,包括结构简单、无性增殖方式、可经细胞
培养、增殖迅速、便于纯化等,使其具有作为遗传学研究材料的独特优势。�
众所周知,包括病毒在内的各种生物遗传的物质基础是核酸。事实上,这一结论
最初的直接证据正是来自于对病毒的研究。为了说明这一点,首先让我们回顾两个经
典的实验:①噬菌体感染试验:T2是感染大肠杆菌的一种噬菌体,它由蛋白质外壳(
约60%)和DNA核芯(约40%)构成,蛋白质中含有硫,DNA中含有磷。把�3�2P和�3�5S

标记T2,
并用标记的噬菌体进行感染试验,就可以分别测定DNA和蛋白质的功用。Hershey和
Chase(1952)在含有�3�2P或�3�5S的培养液中将T2感染大肠杆菌,得到标记的噬菌体,


后用标记的噬菌体感染常规培养的大肠杆菌,再测定宿主细胞的同位素标记,结果用
�3�5S标记的噬菌体感染时,宿主细胞中很少有同位素标记,大多数的�3�5S标记噬菌

体蛋
白附着在宿主细胞的外面,用�3�2P标记的噬菌体感染时,大多数的放射性标记在宿主细
胞内。显然感染过程中进入细胞的主要是DNA。②病毒重建实验:烟草花叶病病毒
(tobacco mosaic virus,TMV)由蛋白质外壳和RNA核芯组成。可以从TMV分别抽提得
到它的蛋白质部分和RNA部分。Fraenkel�Courat(1956)实验证明,用这两种成分分
别接种烟草,只有病毒RNA可引起感染。虽然感染效率较低,但足以说明遗传物质为
RNA。Fraenkel�Courat利用分离后再聚合的方法,先取得TMV的蛋白质外壳和车前病
毒(Holmes Rib Grass Virus,HRV)的RNA,然后把它们结合起来形成杂合病毒,这种
杂合病毒有着普通TMV的外壳,可被抗TMV抗体所灭活,但不受抗HRV抗体的影响。当
用杂合病毒感染烟草时,却产生HRV感染的特有病斑,从中分离的病毒可被抗HRV抗体
灭活。反过来将HRV的蛋白质和TMV的RNA结合起来也得到类似的结果。目前已经能够由
许多小型RNA病毒和某些DNA病毒提取感染性核酸。如第四章所述,这些感染性核酸在
感染细胞以后,可以产生具有蛋白质衣壳和脂质囊膜的完整子代病毒。由脊髓灰质炎
病毒的RNA与柯萨奇病毒的衣壳构成的杂合病毒,在感染细胞后产生的子代病毒将是完
全的脊髓灰质炎病毒。以上事实说明,核酸是病毒遗传的决定机构,而蛋白质衣壳和
脂质囊膜不过是在病毒核酸遗传信息控制下合成或由细胞“抢来”的成分。这些成分
虽然决定着病毒的抗原特性,而且与病毒对细胞的吸附有关,在一定程度上影响着病
毒与宿主细胞或机体的相互关系,例如感染与免疫,但从病毒生物学的本质来看,它
们只是病毒粒子中附属的或辅助的结构。核酸传递遗传信息的基础在于其碱基的排列
顺序,病毒核酸复制时能够产生完全同于原核酸的新的核酸分子,从而保持遗传的稳
定性。但是,病毒没有细胞结构,缺乏独立的酶系统,故其遗传机构所受周围环境的
影响,尤其是宿主细胞内环境的影响特别深刻;加之病毒增殖迅速,突变的机率相应
增高,这又决定了病毒遗传的较大的动摇性——变异性。采用适当的选育手段,常可
较快获得许多变异株。应用各种理化学和生物学因子进行诱变,也能较快看到结果。
而病毒粒子之间以及病毒核酸之间的杂交或重组,又为病毒遗传变异的研究,开辟了
广阔前景。这些便利条件使病毒遗传变异的研究远远超出了病毒学本身的范围,成为
人类认识生命本质和规律的一个重要的模型和侧面。�
遗传和变异是对立的统一体,遗传使物种得以延续,变异则使物种不断进化。本
章主要论述病毒的变异现象、变异机理以及研究变异的方法和诱变因素等,关于病毒
的遗传学理论请参阅有关的专业书籍。�
病毒的遗传变异常常是“群体”,也就是无数病毒粒子的共同表现。而病毒成分,
特别是病毒编码的酶和蛋白质,又常与细胞的正常酶类和蛋白质混杂在一起。这显然
增加了病毒遗传变异特性鉴定上的复杂性。�
变异是生物的一般特性。甚至在人类尚未发现病毒以前,就已开始运用变异现象
制造疫苗。例如1884年,巴斯德利用兔脑内连续传代的方法,将狂犬病的街毒(强毒)
转变为固定毒。这种固定毒保留了原有的免疫原性,但毒力发生了变异——非脑内接
种时,对人和犬等的毒力明显降低,因而成功地用作狂犬病的预防制剂。此后,在许
多动物病毒方面,应用相同或类似的方法获得了弱毒株,创制了许多优质的疫苗。选
育自然弱毒变异株的工作,也取得了巨大成就。但是有关病毒遗传变异机理的认识,
则只在最近几十年来才有显著的进展。这不仅是病毒学本身的跃进,也是其它学科,
特别是生物化学、分子生物学、免疫学以及电子显微镜、同位素标记等新技术飞速发
展的结果。
第2个回答  2008-03-07
高二生物课本。请楼主具体点,要哪个方面的。