韦达定理是x1+x2=-b/a,x1*x2=c/a,可以先求(x1-x2)^2,而(x1-x2)^2=x1^2+x2^2-2*x2*x1=x1^2+x2^2+2*x2*x1-4*x2*x1=(x1+x2)^2-4*x2*x1,然后带入韦达定理开根号即可求出x1-x2。
扩展资料:
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。
韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
(x1-x2)²
=(x1+x2)²-4x1x2
所以:
x1-x2
=±√[(x1+x2)²-4x1x2]
希望对你有帮助,满意请及时采纳,
你的采纳是我回答的动力!