欧拉公式怎么将三角函数变为指数

如题所述

高等代数中使用欧拉公式将三角函数转换为指数(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

cosα=1/2[e^(iα)+e^(-iα)]
sinα=-i/2[e^(iα)-e^(-iα)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。

扩展资料

三角函数与欧拉定理:

假设生产函数为:Q=f(L.K)(即Q为齐次生产函数),定义人均资本k=K/L

方法1:根据齐次生产函数中不同类型的生产函数进行分类讨论

(1)线性齐次生产函数

n=1,规模报酬不变,因此有:

Q/L=f(L/L,K/L)=f(1,k)=g(k)

k为人均资本,Q/L为人均产量,人均产量是人均资本k的函数。

让Q对L和K求偏导数,有:

∂Q/∂L=∂[L*g(k)]/∂L=g(k)+L*[dg(k)/dk]*[dk/dL]=g(k)+L*g’(k)*(-K/)=g(k)-k*g’(k)

∂Q/∂K=∂[L*g(k)]/ ∂K=L*[∂g(k)/∂k]=L*[dg(k)/dk]*[∂k/∂K]=L*g’(k)*(1/L)=g’(k)

由上面两式,即可得欧拉分配定理:

L*[∂Q/∂L]+K*[∂Q/∂K]=L*[g(k)-k*g’(k)]+K*g’(k)=L*g(k)-K*g’(k)+K*g’(k)=L*g(k)=Q

参考资料:百度百科—欧拉定理

温馨提示:答案为网友推荐,仅供参考
第1个回答  2018-09-18

高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。

扩展资料

在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。

参考资料:百度百科-欧拉公式

本回答被网友采纳
第2个回答  2018-06-27

e^(iα)=cosα+isinα; e^(-iα)=cosα-isinα;cosα=1/2[e^(iα)+e^(-iα)];sinα=-i/2[e^(iα)-e^(-iα)]。

三角函数与欧拉

三角学是以三角形的边角关系为基础,研究几何图形中的数量关系及其在测量方面的应用的数学分支。“三角学”一词的英文“trigonometry ”就是由两个希腊词“三角形”和“测量”合成的。现在,三角学主要研究三角函数的性质及其应用。

1463年,法国学者缪勒在《论三角》中系统总结了前人对三角的研究成果。17世纪中叶,三角由瑞士人邓玉函(Jean Terrenz 1576-1630)传入中国。在邓玉函的著作《大测》二卷中,主要论述了三角函数的性质及三角函数表的制作和用法。当时,三角函数是用左图中的八条线段的长来定义的,这已与我们刚学过的三角函数线十分类似。    

著名数学家、物理学家和天文学家欧拉(Léonard Euler)1707年出生于瑞士的巴塞尔,1720年进入巴塞尔大学学习,后获硕士学们。1727年起,他先后到俄国、德国工作,1766年再次到俄国直至逝世。

1748年,欧拉出版了一部划时代的著作《无穷小分析概论》,其中提出三角函数是对应的三角函数线与圆的半径的比值,并令圆的半径为1,这使得对三角函数的研究大为简化,他还在此书的第八章中提出了弧度制的思想。

他认为,如果把半径作为1个单位长度,那么半圆的长就是Π,所对圆心角的正弦是0,即sin Π=0,同理,圆的1/4的长是Π/2,所对圆心角的正弦是1,可记作sin Π/2=1。这一思想将线段与弧的度量单位统一起来,大大简化了某些三角公式及其计算。

18世纪中叶,欧拉给出了三角函数的现代理论,他还成功地把三角函数的概念由褛范围推广到复数范围。

值得指出,1735年,欧拉右眼失明,《无穷小分析概论》这部著作出自版于他这一不幸之后。他的著作,在样式、范围和记号方面堪称典范,因此被许多大学作为教科书采用。

1766年,他回到俄国不入,又转成双目失明,他以惊人的毅力,在圣彼得堡又用口述由别人记录的方式工作了近17年,直到1783年去世。1909年,瑞士自然科学学会开始出版欧拉全集,使他卷帙浩繁的著作得以流芳百世,至今已出版七十余卷。

欧拉公式的发现过程

早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。但在当时这个规律并未广泛流传。

过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。

欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?

欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。

事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。

欧拉是一位不折不扣的数学天才。但是他的非凡成就也和他对数学的热爱有关。在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。

第3个回答  推荐于2018-01-13
e^(iα)=cosα+isinα ; e^(-iα)=cosα-isinα;

cosα=1/2[e^(iα)+e^(-iα)]
sinα=-i/2[e^(iα)-e^(-iα)]本回答被提问者和网友采纳
第4个回答  2019-12-21
欧拉公式,嗯,将。三角函数变为指数是一个。嗯,比较复杂的过程,嗯,这个是比较专业的问题,我觉得请教数学老师比