八年级上册数学题(与三角形有关)

已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕点B旋转,它的两边分别交AD,DC(或它们的延长线)于点E,F。
当∠MBN绕点B旋转到AE≠CF时,在以下两种情况下,AE+CF=EF是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF 又有怎样的数量关系?请写出你的猜想,不需证明。

(1)解:如图1,AE+CF=EF,
理由:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,
在△ABE和△CBF中,

AB=BC
{∠A=∠C=90°
AE=CF
∴△ABE≌△CBF(SAS);
∴∠ABE=∠CBF,BE=BF;
∵∠ABC=120°,∠MBN=60°,
∴∠ABE=∠CBF=30°,
∴AE=1/2 BE
CF=1/2BF;
∵∠MBN=60°,BE=BF,
∴△BEF为等边三角形;
∴AE+CF=1/2BE+1/2BF=BE=EF;

(2)如图2,(1)中结论成立
证明:延长FC到H,使CH=AE,连接BH,
∵AB⊥AD,BC⊥CD,
∴∠A=∠BCH=90°,
∵在△BCH和△BAE中

BC=AB
{∠BCH=∠A
CH=AE
∴△BCH≌△BAE(SAS),
∴BH=BE,∠CBH=∠ABE,
∵∠ABC=120°,∠MBN=60°,
∴∠ABE+∠CBF=120°-60°=60°,
∴∠HBC+∠CBF=60°,
∴∠HBF=60°=∠MBN,
在△HBF和△EBF中

BH=BE
{∠HBF=∠EBF
BF=BF
∴△HBF≌△EBF(SAS),
∴HF=EF,
∵HF=HC+CF=AE+CF,
∴EF=AE+CF.

图3中的结论不成立,线段AE、CF,EF的数量关系是AE=EF+CF,
证明:在AE上截取AQ=CF,连接BQ,
∵AB⊥AD,BC⊥CD,
∴∠A=∠BCF=90°,
在△BCF和△BAQ中

BC=AB
{∠BCF=∠A
CF=AQ
∴△BCF≌△BAQ(SAS),
∴BF=BQ,∠CBF=∠ABQ,
∵∠MBN=60°=∠CBF+∠CBE,
∴∠CBE+∠ABQ=60°,
∵∠ABC=120°,
∴∠QBE=120°-60°=60°=∠MBN,
在△FBE和△QBE中

BF=BQ
{∠FBE=∠QBE
BE=BE
∴△FBE≌△QBE(SAS),
∴EF=QE,
∵AE=QE+AQ=EF+CF,
∴AE=EF+CF,
即(1)中的结论不成立,线段AE、CF,EF的数量关系是AE=EF+CF.
具体的图见
http://www.jyeoo.com/math/ques/detail/7ff90ace-d4e1-47a3-baf3-aa8e4408e991
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-11-26

记得采纳

第2个回答  2013-11-26