高数积分证明题

设f(x)在[-a,a]上二阶导函数连续,(a>0),且f(0)=0,证明:在[-a,a]上至少存在一点c,使得a^3f''(c)=3∫(a~-a)f(x)dx
那个积分是上限为a,下限为-a,要过程,答得好的绝对加分。
等式左边是a的三次方

简单计算一下即可,答案如图所示

温馨提示:答案为网友推荐,仅供参考
第1个回答  2010-12-11
要用到泰勒公式和积分中值定理:
f(x)
=f(0)+f'(0)x+[f''(θ)/2]x^2
=f'(0)x+[f''(θ)/2]x^2

对上式在区间[-a,a]上作定积分
∫(a~-a)f(x)dx
=f'(0)∫(a~-a)xdx+∫(a~-a)[f''(θ)/2]x^2dx
到这一步一定要注意:θ是关于x的一个变量
∵x^2在区间[-a,a]上不变号,f''(θ)/2是[-a,a]上有界函数
f''(θ)/2∈[m/2,M/2]
∴利用积分中值定理
→接上面的等号:
=[ξ/2]∫(a~-a)x^2dx【ξ∈[m,M]】
=[f''(c)/2]∫(a~-a)x^2dx
=[f''(c)/2][2a^3/3]
=f''(c)a^3/3

∴在[-a,a]上至少存在一点c,使得a^3f''(c)=3∫(a~-a)f(x)dx本回答被提问者采纳